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Abstract. A promising technique for the formal verification of embed-
ded and cyber-physical systems is flow-pipe construction, which creates
a sequence of regions covering all reachable states over time. Flow-pipe
construction methods can check whether specifications are met for all
states, rather than just testing using a finite and incomplete set of simu-
lation traces. A fundamental challenge when using flow-pipe construction
on high-dimensional systems is the cost of geometric operations, such
as intersection and convex hull. We address this challenge by showing
that it is often possible to remove the need to perform high-dimensional
geometric operations by combining two model transformations, direct
time-triggered conversion and dynamics scaling. Further, we prove the
overapproximation error in the conversion can be made arbitrarily small.
Finally, we show that our transformation-based approach enables the
analysis of a drivetrain system with up to 51 dimensions.

1 Introduction

Hybrid automata [6] are often used to model embedded and cyber-physical sys-
tems with a combination of discrete and continuous dynamics. Due to their ex-
pressiveness, however, hybrid automata can be difficult to verify. The flow-pipe
construction technique [39] performs analysis with regions of states; it starts with
a given initial set of states and propagates the set forward in time, constructing
a sequence of regions that overapproximate the reachable set of states up to a
time bound. To check which states can take a discrete transition, a geometric
intersection is performed between the continuous reachable region and a transi-
tion’s guard set. Afterwards, the intersected states are combined together in an
aggregation step, often done by taking their convex hull or performing a template
polytope overapproximation. Without guards, methods exist which can scale to
analyze purely continuous systems with thousands of state variables [10], but
no such scalability results exist for systems with guards, due to the complexity
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of high-dimensional intersection and aggregation. For this reason, we propose a
new method to try to remove the need for these costly geometric operations.

In particular, we leverage time-triggered transitions [2, 8]. In a system with
time-triggered transitions, the discrete mode change occurs after a certain
amount of time has elapsed. In contrast, space-triggered transitions have mode
changes based on the system’s continuous state, and may arise from models of
switched systems, or continuous systems with gain-scheduled controllers. Propa-
gating sets of states through time-triggered transitions is practically free; it does
not require performing high-dimensional intersection or convex hull.

In this paper, we present a transformation that can, under certain assump-
tions, convert a space-triggered transition to a series of time-triggered transi-
tions. The main assumption for this conversion is that all executions of the hy-
brid automaton must pass through the guard completely (partial intersections
with the guard are not considered here), and resets along transitions are not
allowed. The main contributions of this paper are as follows:

• We present a new transformation process to convert a space-triggered tran-
sition to a series of time-triggered transitions;

• We prove that, in theory, the overapproximation error due to the proposed
transformation can be reduced to an arbitrarily small constant;

• We demonstrate that, in practice, the approach works well on a numerical
example of a high-dimensional drivetrain system.

This paper first introduces key definitions (Section 2), provides descriptions of
the proposed transformations and accuracy proof (Section 3), and then evaluates
the approach on a numerical example (Section 4). Related approaches are then
discussed (Section 5), followed by a conclusion (Section 6).

2 Preliminaries

In order to define and justify the soundness of the model transformation steps
used in our approach, we need to first precisely define the syntax and semantics
of hybrid automata and some related concepts.

Definition 1 (Hybrid Automaton). A hybrid automaton H is a tuple
H ∆= (Modes,Var ,Init,Flow,Trans,Inv), where: (a) Modes is a finite set of dis-
crete elements, each of which we call a mode; (b) Var = (x1, . . . , xn) is a list of
real-valued variables. (c) Init(m) ⊆ Rn is a bounded set of initial values for Var
for each mode m ∈ Modes; (d) For each m ∈ Modes, the flow relation Flow(m)
has the form of ẋ ∈ fm(x), where x ∈ Rn and fm : Rn → 2Rn . (e) Trans is a set
of discrete transitions, each of which is a 4-tuple (m,G, υ,m′), where m and m′
are the source and the target modes, G ⊆ Rn is the guard, and υ : Rn → Rn is
the update or reset of the transition; (f) Inv(m) ⊆ Rn is an invariant for each
mode m ∈ Modes.



When a hybrid automaton has n real-valued variables, we say that H is
n-dimensional, and has states with continuous part in Rn. Note that fm is a set-
valued function, i.e., differential inclusions, ẋ ∈ fm(x), are allowed [46]. When
the flows are deterministic, we may simply write them as a differential equation
ẋ = fm(x). Now, we introduce a notion of distance which is useful to quantify
properties of hybrid automata as well as errors.

Definition 2 (Distance). Let ‖·‖ be the L2 norm of a point in Rn and
d(x,x′) = ‖x − x′‖ be the distance between two points in Rn. We will write
dS(x) to mean the lower bound on the distance between the point x and a set S,
dS(x) = inf{d(x,x′) | x′ ∈ S}.

Although the flows can be non-deterministic, they must obey a Lipschitz
continuity property: in each mode m, there exists a constant Lm such that,
for any two points x1,x2 ∈ Rn, for any y1 ∈ fm(x1), there exists a y2 ∈
fm(x2) with d(y1,y2) ≤ Lm ·d(x1,x2). To define the formal semantics of hybrid
automata, we introduce the notion of a state.

Definition 3 (State). A state s ∈ States of an n-dimensional hybrid automa-
ton is a pair (m,x), with mode m ∈ Modes and continuous part x ∈ Rn.

The semantics of hybrid automata is defined in terms of executions where an
execution is a sequence of states. A state can change either due to a continuous
flow or discrete transition, which requires the definition of successors.

Definition 4 (Continuous Successor). A state (m′,x′) is a continuous
successor of another state (m,x) if m′ = m and there exists a positive time
t and a differentiable function g : [0, t] → Rn such that the following holds:
(1) g(0) = x, (2) g(t) = x′ and (3) for all δ ∈ (0, t): g(δ) ∈ Inv(m) and
(g(δ), ġ(δ)) ∈ Flow(m).

We refer to the time t as a dwell time spent in the mode m.

Definition 5 (Discrete Successor). A state (m,x′) is a discrete successor
of another state (m,x) if there exists a transition (m,G, υ,m′) ∈ Trans such
that x ∈ G and υ(x) = x′.

Based on these definitions, we can define an execution of a hybrid automaton:

Definition 6 (Execution). An execution ξ = s0s1 . . . of a hybrid automaton
H is a (finite or infinite) sequence which starts at an initial state s0 of H, i.e.
for s0 = (m,x) it holds that x ∈ Init(m). Each of si+1 is either a continuous
or discrete successor of si. For finite executions, we call the last state in the
sequence the end state, and can refer to the duration of the execution as the sum
of the dwelling times over all continuous successors in the execution. Given two
executions of a hybrid automaton ξ and ξ′, where ξ is finite, we say ξ is a prefix
of ξ′ if the sequence ξ′ begins with ξ.

The consideration of all possible executions defines the reachable states:



Definition 7 (Reachable States). A state s is a reachable state of a hy-
brid automaton H if s is the end state of some execution of H. In this paper,
we primarily compare the continuous parts of reachable states. The set of all
points which are the continuous part of some reachable state of H is written
as Reach(H). The set of time-bounded continuous reachable states, which corre-
sponds to the continuous parts of end states of all executions with durations no
longer than T , is written as Reach≤T (H).

To analyze our time-triggered transformation, we introduce overapproximat-
ing hybrid automata as well as a definition of error in the overapproximation.
Note that, when considering continuous overapproximations (and later their er-
rors), if H′ has more variables than H, the variables exclusive to H′ are projected
away before doing the comparison. That is, the projection of Reach(H′) onto Var ,
Reach(H′) ↓Var , is used instead of Reach(H′), where Var are the variables of the
original automaton H.

Definition 8 (Continuous Overapproximation). A hybrid automaton H′ is
a continuous overapproximation of another hybrid automaton H if the inclu-
sion Reach(H′) ⊇ Reach(H) holds. A time-bounded version can also be defined.
We say that H′ with time bound T ′ is a time-bounded continuous overapproxi-
mation of automaton H with time bound T if Reach≤T (H) ⊆ Reach≤T ′(H′).

Definition 9 (Time-Bounded Continuous Overapproximation Error).
Let H be a hybrid automaton with a time bound T , and H′ with time bound T ′ be
a time-bounded continuous overapproximation of H. Then, the time-bounded
continuous overapproximation error is supx′∈Reach≤T ′ (H′) dReach≤T (H)(x′).

This measurement of error is equal to the asymmetric Hausdorff distance
from Reach≤T ′(H′) to Reach≤T (H′). Further, such a measurement is relevant
for model transformations, such as the ones proposed in this paper. Rather than
computing the reachable set of states of an automaton H with time bound T ,
we can instead compute reachable sets on a modified automaton H′ with a
different time bound T ′. The time-bounded continuous overapproximation error
can be used to measure the amount of error, in space, that an ideal reachability
computation would have due to the use of H′ instead of the original H.

3 Transformations

In this section, we describe a way to convert certain space-triggered transitions
into time-triggered ones. This is beneficial for reachability analysis algorithms,
since time-triggered transitions can be handled efficiently. In order to do this, we
first describe a direct time-triggered conversion transformation in Section 3.1,
followed by a dynamics scaling transformation in Section 3.2. We combine the
two transformations to construct the final automaton in Section 3.3, which we
prove is an overapproximation with an error that can be made arbitrarily small
in Theorem 1. We make four assumptions about the original automaton.



Assumption 1 We present the conversion assuming that the original automa-
ton H consists of two modes m1 and m2 with deterministic dynamics connected
by a single transition (see top of Figure 1), and all the initial states are in m1.

It is often possible to apply the transformation to a more general hybrid
automaton, by adapting the proposed process and considering a single transition
at a time for the finite time-bound, as will be shown later in our evaluation in
Section 4. In this conversion, there are two cases to consider: 1) The reachable
set hits one guard set at a time. 2) Several guard sets are hit at once. Again,
by removing the parts of the reachable set that are already hit by other guards,
one can extract cases with a single guard intersection, as studied in this work
(also see Sec. 5.5 of [2]). The only difference is that now a tree of possible next
discrete states is spanned instead of consecutive next discrete states as in case
1). Notice that due to the finite time bound, and under a non-Zeno assumption,
it is possible to unroll any loops in the automaton.

Assumption 2 The single transition of H is space-triggered with a single linear
condition, G = {x | a · x = b}. Since the transition is space-triggered, there is
no reset and the invariant of m1 is a · x ≤ b (one side of the guard).

The approach may be generalizable to more complex guards, but it would
require a more complicated dynamics scaling process.

Assumption 3 At some time tmax, all executions have taken the transition.

Not all transitions satisfy Assumption 3, and it is one of the main restrictions
of the approach.

Assumption 4 For any amount of time tγ , there exists a distance γ from the
guard G, such that any execution that gets within distance γ of the guard must
take the transition before tγ time.

Assumption 4 ensures that there are no executions that can touch the guard
set and then back away without crossing the guard. One way to ensure this is
by examining the Lie derivative of the guard level-set function, B(x) = a · x− b
with respect to the mode’s flow vector field. Due to the continuity of the flows,
the condition is satisfied if there is some constant ε > 0, such that at every point
x where a transition might occur, ∂B∂x fm1(x) ≥ ε.

3.1 Direct Time-Triggered Conversion Transformation

First, we aim to replace the space-triggered transition of H with two time-
triggered transitions. This is done by constructing a new automaton Htt, which
is a continuous overapproximation of H. We proceed with the following steps to
transform the original hybrid automaton H to Htt:

1. We remove the space-triggered transition between m1 and m2.



Fig. 1: The direct time-triggered conversion transformation, described in Sec-
tion 3.1, converts the original automaton H (top), to an overapproximating
automaton that only has time-triggered transitions, Htt (bottom), using the
parameters t1 and t2.

2. We add a new intermediate mode meither and transitions such that the
hybrid automaton switches from m1 to meither and then to m2.

3. We add a new time variable, t, to the automaton with derivative ṫ = 1 in
each mode. This will be used to force certain dwell times (exact times spent
in each mode) as part of the new time-triggered transitions.

4. We equip the newly-introduced transitions with time-triggered guards. In
other words, the guards are of the form t = t1 and t = t2, with invariants of
the modes set to when t is less than t1 or t2, and resets t := 0 upon entering
each mode. The first dwell time t1 is selected to be the minimum duration
when, in the original automaton, every finite execution with duration up to
t1 has an end state still in modem1. Similarly, t2 is selected to be the smallest
time such that the sum t1 + t2 is a time after which every finite execution
with duration greater than or equal to t1 + t2 has an end state with mode
m2. Time t2 exists because by Assumption 3, all executions eventually take
the transition.

5. We assign the continuous dynamics in the mode meither so that it over-
approximates the dynamics in m1 and m2. This means that for any state
x, the flow in meither contains the flows in m1 and m2, f1(x) ∪ f2(x) ⊆
feither(x). In this way, we express the fact that executions of H with dura-
tions in the range [t1, t1 + t2] end in states that can be in either mode.

The conversion of H to Htt is illustrated in Figure 1. Notice that, in practice,
the times t1 and t2 would be available during flow-pipe construction since a tool
must check at each step if a guard can be reached. This transformation results
in a time-bounded overapproximation, which we prove next.



Lemma 1. For any time bound T , the constructed Htt is a time-bounded contin-
uous overapproximation of the original automaton H with the same time bound.

Proof. Consider any execution ξ of H which ends at a state s with continuous
part x. If the mode of s is m1, then ξ is also directly an execution of Htt, and so
an execution exists that ends with a state with continuous part equal to x. In
the other case, if the mode of s is m2, then let ttrans be the maximum duration
of any prefix of ξ ending in a state with mode m1 (ttrans is the time of the
transition). By the construction of Htt, ttrans ≥ t1.

The duration of ξ is either (1) less than or (2) greater than or equal to t1 +t2.
In the first case, there is an execution ofHtt which first spends t1 time inm1, then
spends ttrans − t1 using the dynamics of m1 in mode meither (because meither’s
dynamics are a differential inclusion containing the dynamics of m1), and finally
spends the remaining time using the dynamics of m2 in mode meither (again,
because, meither’s dynamics contain m2’s dynamics). This execution ends in a
state with continuous part equal to x. In the second case, the execution would
spend t2− (ttrans− t1) in mode meither using the dynamics of m2, and then use
the remaining time in mode m2 to also end at a state with continuous part x.
In all cases, we have constructed an execution of Htt of equal duration with an
end state with continuous part equal to x, and this holds for any execution ξ of
H, and so Reach≤T (H) ⊆ Reach≤T (Htt). ut

The time-bounded continuous overapproximation error of Htt crucially de-
pends on the dwell time t2 spent in the intermediate mode meither. This follows
from the fact that the dynamics in meither is nondeterministic, subsuming both
the dynamics of m1 and m2. This can be reduced by choosing the dynamics
feither to be as small as possible while still containing both f1 and f2. In gen-
eral, however, the error cannot be eliminated without a further transformation.

3.2 Dynamics Scaling Transformation

Next, we introduce a dynamics scaling transformation that is later used to sub-
stantially reduce the overapproximation error inHtt. We first describe this trans-
formation in isolation since it is quite general and we can show that it theoreti-
cally does not modify the continuously reachable states (Lemma 2).

Let Hsingle be a hybrid automaton with a single modem with continuous dy-
namics ẋ = f(x). We proceed with the following steps to transform to construct
a new automaton Hscaling from a copy of Hsingle:

1. We create two additional copies of m: mscaling and m′.
2. We add a new time variable t in the automaton to measure the dwell time

(unless such a variable already exists), with ṫ = 1 in all three modes.
3. We equip the automaton with time-triggered transitions with dwell times
tbegin (from m to mscaling) and tscaling (from mscaling to m′), where tbegin >
0 and tscaling > 0 are parameters of the transformation.



Fig. 2: The dynamics scaling transformation, described in Section 3.2, converts
a single-mode automaton Hsingle (top), to an automaton with an identical con-
tinuous reachable set Hscaling (bottom).

4. We change the flow of mscaling to ẋ = g(x) · f(x) where f(x) is the original
dynamics in m, and g(x), a user-defined function, is a scalar function that
outputs a nonnegative number for every reachable state x.

The dynamics scaling transformation is shown in Figure 2. It does not change
the time-bounded continuous reachable set of states, which is proved next.

Lemma 2. For any times T and tscaling, the reachable set of the constructed
Hscaling with time bound T ′ = T + tscaling is a zero-error time-bounded contin-
uous overapproximation of the reachable set of Hsingle with time bound T .

Proof. First, we show that Hscaling is a time-bounded continuous overapproxi-
mation, and then we analyze its error.

Consider any execution ofH ending with a continuous state x ∈ Reach≤T (H).
The dynamics of each mode in Hscaling are identical to the original Hsingle, ex-
cept in mscaling, where they get multiplied by a non-negative value at each
point in space. This has the effect of scaling the vector field, without chang-
ing any of the directions. In the worst-case, the scaling factor in mscaling, g
can be zero, which effectively pauses the executions for at most tscaling time.
Since the time bound of Hscaling is T ′ = T + tscaling, we can ensure that
x ∈ Reach≤T ′(Hscaling) ↓ Var , and so Hscaling is a time-bounded continuous
overapproximation. Notice that if ever g(x) > 1, more states may be reached by
Hscaling than H for the same time-bound. However, any execution of H up to
time T is still contained in (the larger) Reach≤T ′(Hscaling).

In terms of error, consider any point in x′ ∈ Reach≤T ′(Hscaling). Since the
direction of the vector field in each of the modes of Hscaling is unchanged from



Fig. 3: For the Van der Pol dynamics, the currently-tracked set of states becomes
flattened against the x axis when using a scaling function g(x) = −y. The time-
invariant set of reachable states below the x axis (grey states) is unchanged.

H, the point x′ will eventually be the continuous part of a reachable state of H.
Thus, dReach(H)(x′) = 0, and so the overapproximation error is zero. ut

Dynamics scaling can alter the set of states reachable with executions of a
fixed duration, without altering the final (time-invariant) continuous reachable
set. This is practically useful, because reachability algorithms usually perform
their computations using sets which correspond to continuous trajectories of a
fixed duration, which is sometimes called the currently-tracked set of states [8].

To reduce the error in the time-triggered conversion, we use dynamics scal-
ing to flatten the currently-tracked set of states against a guard boundary.
An illustration of this for the Van der Pol system, with dynamics ẋ = y and
ẏ = (1 − x2) · y − x, is shown in Figure 3. Here, when the dynamics is scaled
based on the distance from the y = 0 guard, the currently-tracked set of states
becomes flattened as it approaches the x axis.

3.3 Combined Scaled Time-Triggered Transformation

We now combine the transformations from Section 3.1 and Section 3.2 into a
single transformation, which can theoretically be done with arbitrary accuracy.
The steps to produce the final automaton Hfinal starting from H are as follows:

1. We first apply the time-triggered transformation on H to produce Htt.
2. Next, we apply a version of the dynamics scaling transformation to mode m1

of Htt. For the time tbegin of the transformation we use t1. Time tscaling is
a parameter of the transformation. For the scaling function g(x), we use the
minimum distance from the point to the guard set, dG(x). Since the guard
set is defined with a single linear condition, G = {x | a · x = b}, we use the
dynamics scaling function g(x) = −â · x + b, where â = a

‖a‖ is the normal
vector associated with a and · is the standard dot product. This function is



Fig. 4: The original automaton H (top) is transformed using both time-triggered
conversion and dynamics scaling to produce the final automaton Hfinal (bot-
tom). Theorem 1 proves that the error due to this transformation can be reduced
to an arbitrarily small constant by increasing tscaling.

nonnegative for any x in m1, meeting the required condition for g in step 4
of the dynamics scaling transformation.

3. We directly transition from mscaling to meither, deleting m′1 and its associ-
ated transitions.

The transformation is shown in Figure 4. Since the time-triggered transfor-
mation results in a time-bounded overapproximation (Lemma 1), and the appli-
cation of the scaling transformation does not alter the reachable states but only
the time at which they are reached (Lemma 2), the following corollary holds:

Corollary 1. For any choice of tscaling ≥ 0, the constructed Hfinal with time
bound T ′ = T + tscaling is a time-bounded continuous overapproximation of H
with time bound T .

Not only is Hfinal a time-bounded continuous overapproximation, but the
overapproximiation error can also be reduced to an arbitrarily small constant.
Intuitively, the reason why the error can be made arbitrarily small is that by
increasing tscaling, the set of states upon entering meither becomes more and
more flattened against the original guard’s boundary. Since all states are then
about to cross the guard, the time needed in meither becomes arbitrarily small,
reducing the only source of overapproximation error in the time-triggered con-
version. Then, by the Lipschitz continuity of the dynamics, in finite time, the
total divergence can also be made arbitrarily small as shown next.

Theorem 1. For any time T and any desired error δ > 0, there exists a tscaling
such that the time-bounded continuous overapproximation error between H with
time bound T and Hfinal with time bound T ′ = T + tscaling is less than δ.



Proof. First, by Corollary 1, we know that Hfinal is a time-bounded overap-
proximation. Second, to show the error can be reduced to less than any δ > 0,
we will find a tscaling such that, given any point x′ ∈ Reach≤T ′(Hfinal), there
exists a point x ∈ Reach≤T (H) such that d(x,x′) < δ.

Consider any δ > 0. Let s′ be the final state of an execution ξ′ of Hfinal that
has continuous part x′, such that s′ = (m′,x′). We proceed by showing there
exists a tscaling for each of the four possible cases of m′.

Case m′ = m1: ξ′ is directly an execution of H for any value of tscaling, so
s′ is reachable in H. Thus, x = x′ with d(x,x′) = 0 < δ.

Case m′ = mscaling: since the execution ξ′ only reaches m1 and mscaling, we
can apply the same reasoning as in Lemma 2, and for any value of tscaling, find an
execution of H that ends with continuous part x = x′. Again, d(x,x′) = 0 < δ.

Case m′ = meither: the execution ξ′ will contain a prefix execution ξ′prefix
of maximum duration that ends in mode mscaling. Let x′prefix be the continuous
part of the end state of ξ′prefix, and let teither be the time ξ′ spends in meither

(the duration of ξ′ minus the duration of ξ′prefix). Notice that by the same
argument as in the second case, x′prefix is the continuous part of some reachable
state of H. Let Leither be the Lipschitz constant of the flows in meither. Using
the definition of Lipschitz constants, the distance between x′prefix and x′ will
be bounded by ‖x′prefix‖(eLeither·teither − 1). Thus, if we can show that teither
can be made arbitrarily small, we can also make the distance between x′prefix
and x′ less than δ. Notice that teither is upper bounded by t2, which is the
maximum amount of time it takes for all executions reach the single guard G
of the original automaton. Further, by Assumption 4 of the original automaton,
for any amount of time t, there exists a distance γ from the guard G, such
that any execution that gets within distance γ of G must take G’s transition
before tγ time. We instantiate this assumption taking tγ to be small enough
such that ‖x′prefix‖(eLeither·tγ − 1) < δ. Next, we assign a value of tscaling that
ensures all continuous parts of executions are within γ distance of the guard set
G upon entering meither. By Assumption 3, all executions of H eventually take
the transition. Let tmax be the maximum duration needed to take the transition
using the original dynamics of m1. Since the scaling function g was taken to be
the distance from the guard set G (step 2 of the construction of Hfinal), if we
take tscaling ≥ tmax−t1

γ , we can ensure that all executions, upon transitioning
to meither, are within γ distance of G (because if the dynamics of mscaling

were used from the start, all executions would get within γ distance of G in at
most tmax

γ time). In this case, we have teither ≤ t2 ≤ tγ , which ensures that
‖x′prefix‖(eLeither·teither − 1) ≤ ‖x′prefix‖(eLeither·tγ − 1) < δ. Taking x = x′prefix,
this ensures the desired d(x,x′) < δ.

Case m′ = m2: Any execution of H′ will have an intermediate continuous
state at the moment it takes the transition to m2 which we call x′i. By the same
reasoning as in the above case, when tscaling is large enough, we can guarantee
there is an execution of H that ends at a state that has just transitioned to
m2 with continuous part xi, with ‖xi − x′i‖ less than any positive constant. If
Lm2 is a Lipschitz constant of m2, then the divergence in trajectories between



two points xi and x′i under m2’s dynamics is bounded by ‖xi − x′i‖eLm2 ·t, for
any time t. Pick tscaling such that ‖xi − x′i‖eLm2 ·T < δ. Now, since tm2 , the
amount of time spent in mode m2, is less than the time bound T , we have
‖xi − x′i‖eLm2 ·tm2 < ‖xi − x′i‖eLm2 ·T < δ. Thus, we can take x as the end
point of the execution that goes through xi, and then uses the flow in m2. This
guarantees d(x,x′) < δ.

In all cases, there exists a tscaling so that the error can be reduced to less
than δ. ut

Constructing tscaling: One way to construct the final value of tscaling is:
Following the reasoning in the m2 case, we must ensure ‖xi − x′i‖eLm2 ·T < δ.
This can be done by ensuring the error after meither (which bounds ‖xi −
x′i‖) is less than δ/(eLm2 ·T ). By the reasoning in the meither case, this oc-
curs when ‖x′prefix‖(eLeither·teither − 1) < δ/(eLm2 ·T ), where ‖x′prefix‖ is the
norm of the continuous part of the state upon entering meither, which is less
than ‖Init(m1)‖eLm1 t1 . Substituting and solving for teither, we get the condi-
tion teither < (ln(δ/(eLm2 ·T )/‖Init(m1)‖eLm1 t1) + 1)/Leither. Using Assump-
tion 4, we get the γ corresponding to the teither condition, and then need to
find tscaling to ensure all executions are within γ distance of the guard upon
switching to meither. This can be ensured by taking the maximum time an exe-
cution can remain in the first mode tmax, multiplied by the maximum slowdown
due to scaling γ, resulting in the value of tscaling that ensures the desired error,
tscaling > tmaxγ. Notice that although theoretically the error can be made arbi-
trarily small by choosing a large enough tscaling, flow-pipe construction methods
often have overapproximation error, which may prevent this in practice.

Also notice that the proposed transformations do not depend on Assump-
tion 4, but only the proof that we can make the error small uses it. By using a
different scaling function g, we may be able to remove it.

4 Evaluation

We evaluate the proposed approach using a drivetrain system model [38]. The
complete system dynamics, controller, and initial set description are available in
another work [2], and here we only provide a brief description.

The model is a parameterized vehicle drivetrain, where one can add any
number θ of rotating masses, corresponding to gears and other parts of the
drivetrain such as transmission shafts. Given θ rotating masses, the model con-
tains n = 7 + 2θ dimensions. The hybrid behavior of the drivetrain originates
from backlash [42], which is caused by a physical gap between two components
that are normally touching, such as gears. When the rotating components switch
direction, for a short time they temporarily disconnect, and the system is said
to be in the dead zone. All flows are linear ODEs.

We analyze an extreme maneuver from an assumed maximum negative ac-
celeration that lasts for 0.2 [s], followed by a maximum positive acceleration that
lasts for 1.8 [s]. The initial states of the model are taken to be a zonotope with



Table 1: Computational times in seconds (n = 2θ + 7).

Dimensions 11 21 31 41 51
SpaceEx (smaller init) 541 1669 T/O T/O T/O
CORA Total 75 264 475 654 1073
CORA 1st guard
Scaling Mode 36.95 132.00 281.44 377.25 620.54
Either Mode 0.06 0.11 0.37 1.49 2.96
CORA 2nd guard
Scaling Mode 28.87 122.17 182.22 259.96 427.98
Either Mode 0.05 0.12 0.19 0.72 1.68

a single generator (a line segment in the n-dimensional space). We can make
the reachability problem easier by considering scaling down the initial states by
some percentage. The model has the following specification: after the change of
direction of acceleration, the drivetrain completely passes the dead zone before
being able to transmit torque again. Due to oscillations in the torque trans-
mission, the drivetrain should not re-enter the dead zone of the backlash. The
system has three modes with two transitions between them, and so as mentioned
after Assumption 1, we needed to apply the proposed transformation twice.

The implementation was done in CORA [1], a MATLAB-based tool, on an i7
Processor and 6GB memory. We computed reachable sets with a varying number
of rotating masses, where the total number of dimensions n ∈ {11, 21, 31, 41, 51}
(plots are shown in Fig. 5). Using the transformation approach from this paper,
we could successfully analyze the model using initial states up to 40% of the
desired size, while provably meeting the specification. The overall computational
time, as well as the individual intersection times with the two guard sets are listed
in Tab. 1. The total CPU time for the largest system with 51 dimensions is about
18 minutes. The table also shows that the runtime is dominated by computation
in the scaling modes. This demonstrates a trade-off of our approach: Although we
can eliminate geometric intersections, the dynamics in the scaling mode becomes
more complicated. Further, the error can be reduced by spending more time in
the scaling mode, at the cost of additional computation time.

We also analyzed the same system using SpaceEx [27], the state-of-the art
reachability tool for linear systems which performs geometric operations for
guard intersection and successor aggregation. Note that SpaceEx is a more
general-purpose tool, while the approach here requires that all executions eventu-
ally reach the guard set. For SpaceEx, we used the space-time clustering analysis
scenario [29], and, for each of the models, we tried to maximize the size of the
initial set while ensuring the specification was not violated and the analysis time
was less than 20 minutes. For the n = 11 model, using a flowpipe-tolerance
parameter of 0.0005, in 541 seconds we could successfully analyze the system
with up to 1.1% of the desired initial set size (1.2% violated the error specifi-



Fig. 5: Reachable set using SpaceEx with n = 11 (top left), and using our trans-
formation approach with n = 31 (others).

cation). For the n = 21 model, using a flowpipe-tolerance value of 0.01, in
1669 seconds we could successfully analyze the system with up to 0.2% of the
desired initial set size (0.3% exceeded the time bound). We did not find pa-
rameters which succeeded for the other models within the 20 minute timeout.
This demonstrates that this model is particularly hard for techniques which do
geometric intersection and aggregation as part of reachability analysis. A plot of
the reachable states using SpaceEx and our technique with CORA is shown in
Figure 5.

5 Related Work

Hybrid automata [6] can be analyzed by a number of methods [45]. These range
from SMT [19,25,36], deduction [43], level sets [41], and simulation [24] based to
flow-pipe construction based methods. In this paper, we compute time-bounded
reachability [18] using flow-pipe construction. These methods work by propagat-
ing regions of states, which can be represented using constraint polyhedra [26],
support functions [32], orthogonal polyhedra [23], zonotopes [5], Taylor mod-
els [21,44] or ellipsoids [17,37]. These representations have been implemented in



powerful analysis tools for hybrid automata including HyTech [34], Ariadne [13],
Flow* [20], PHAVer [26], SpaceEx [27], CORA [1], and Hylaa [11].

Research on intersection in flowpipe construction involves techniques which
avoid the intersection operation by employing a nonlinear mapping onto the
guard [2]. Continuization methods [3,4,12] eliminate intersections using abstrac-
tions that get rid of fast-switching dynamics or eliminate guard intersections
between similar continuous dynamics, as performed for meither in this work.
Frehse et al. [30] cast the intersection operator as a convex minimization prob-
lem. Other research examines the problem of efficiently computing geometric
intersections for particular choices of data structures [31,33,35,40].

Our approach was presented using model transformations [9]. Model trans-
formations can be used to derive abstractions [14–16,28]. Bak et al. [8] use model
transformations to encode a hybridization process, i.e. reduction of the analysis
of non-linear hybrid automata to linear ones, also using time-triggered transi-
tions. The pseudo-invariants model transformation [7] can be used to reduce
wrapping-effect error, which may also be possible with the dynamics scaling
approach described in this work, without requiring geometric intersections.

In terms of applicability, benchmarks for various classes of hybrid systems
have been proposed [22]. Of these proposed hybrid benchmarks, the main limit
to applicability is the presence of resets along transitions. Some models, such as
the filtered oscillator or glycemic control system, only use identity resets and do
not have synchronization points, and so may be applicable for our method.

6 Conclusion

In this paper, we have presented a new way to handle certain types of discrete
transitions when performing hybrid systems reachability analysis. We do this
by creating an overapproximation abstraction of the original hybrid automaton
that uses only time-triggered transitions. Given a space-triggered transition, our
technique works in two steps: (1) we first add an intermediate mode which ac-
counts for a “grey” zone when executions can be in either mode; (2) we scale the
continuous dynamics in the first mode to decrease the time interval executions
must spend in previously-mentioned “grey” zone. By applying these transforma-
tions, we remove the need to perform high-dimensional set intersection and set
aggregation, which can be both time-consuming and error-prone.

The trade-off with this approach is that the system dynamics become more
complicated when the dynamics are scaled. A system with linear ODEs, for
example, becomes a quadratic system when scaling is being performed. The
proposed method can also work for systems that originally have nonlinear dy-
namics, and so it is a promising approach to address part of the grand challenge
of verifying high-dimensional nonlinear hybrid systems.
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