
High-level Hybrid Systems Analysis with Hypy

(Tool Presentation)

Stanley Bak1, Sergiy Bogomolov2, and Christian Schilling3

1 Air Force Research Laboratory, Information Directorate, USA
2 IST Austria, Austria

3 University of Freiburg, Germany

Abstract

Hybrid systems play an important role in many application domains. A range of power-
ful analysis methods for this class of systems perform high-level analysis, where, iteratively,
(1) a reachability computation is performed on a system model, (2) the result of the anal-
ysis is examined, and (3) the model is modified and the process repeats. For example, a
well-known high-level analysis method is counter-example guided abstraction refinement
(CEGAR), where, at each iteration, the model is refined based on the counter-example
produced by the reachability computation.

In this paper, we present hypy, a python library which strives to ease the development of
high-level analysis approaches. Hypy provides the necessary machinery to run a number of
up-to-date hybrid systems analysis tools, parse their outputs, and modify the models. The
modifications are performed using HyST, a source-to-source model transformation frame-
work, which supports output formats including SpaceEx, Flow∗, dReach, and HyCreate.
HyST, however, does not run reachability tools nor interpret their output. The developed
hypy library fills this gap, providing an extendable and flexible architecture which simpli-
fies development of complex analysis strategies. We demonstrate its practical potential
on three non-CEGAR case studies: abstraction for parameter identification, generation
of pseudo-invariants to reduce reachability overapproximation error, and completely auto-
matic tool parameter tuning for the Flow∗ reachability tool.

1 Introduction

Hybrid systems [1] play an important role in many application domains, and various tools and
algorithms for reachability analysis have been developed recently. Many analysis approaches for
these systems perform high-level analysis, where the computation is decomposed into a number
of iterations handling modified versions of the input model or analysis parameters.

For example, a widely-used instance of iterative analysis is counter-example guided abstrac-
tion refinement (CEGAR) [2, 13]. The approach works by refining an initial abstraction until
it is fine enough to reason about the given property. In other words, the approach analyzes a
sequence of increasingly precise abstractions and calls a verification engine for each of them.

A second instance of an iterative workflow is in the falsification setting, where the primary
goal is to find an error trajectory. Approaches based on pattern databases [6], for example,
use the results of an abstract analysis to guide the error-trajectory search in the concrete state
space. Here, the methods first use the parameterization capabilities of modern reachability
analysis tools in order to later guide a concrete counter-example search.

The above-mentioned approaches exemplify the importance of high-level analysis in hybrid
systems. We have created the tool hypy in order to simplify the process of developing such
strategies. Our tool provides the necessary machinery to run a number of up-to-date hybrid
systems analysis tools, parse their output results, and modify the input model between reach-
ability tool runs. Hypy can even be used for the development of composite methods relying



High-level Hybrid Systems Analysis with Hypy S. Bak, S. Bogomolov, and C. Schilling

on multiple tools / reachability algorithms as part of their workflow. Hypy uses the model
modification and conversion machinery provided by HyST [5], a framework for source-to-source
model transformation which supports a number of up-to-date tools including SpaceEx [16, 7],
Flow∗ [11], dReach [17], and HyCreate [3]. It does not, however, support running the tools
or interpreting their output. Hypy fills this gap by providing a python-based interface to au-
tomate calls to HyST, run each of the tools, and programmatically retrieve tool results. The
script-based architecture allows fast extensions to individual needs. We demonstrate practical
potential of our tool on three short case studies: a parameter identification abstraction pro-
cess, automatic generation of pseudo-invariants to reduce reachability overapproximation, and
automated tool parameter tuning for Flow∗.

The remainder of the paper is organized as follows. First, Section 2 provides an outline of
the organization of hypy and its capabilities. In Section 3, we discuss three short case studies
which show practical benefits of hypy. This is followed by a discussion about related work in
Section 4 and a conclusion in Section 5.

2 Hypy Organization

Hypy is written in python, and provides both a way to run a set of hybrid analysis tools,
parse and interpret their output, and perform model modification. A simple hypy script which
performs a single reachability computation using SpaceEx and produces a plot is given below.

import hybridpy.hypy as hypy

e = hypy.Engine ()
e.set_model("toy.xml")
e.set_tool("spaceex")
e.set_output_image("result.png")

if e.run() != hypy.RUN_CODES.SUCCESS:
print "engine.run() returned error: " + str(code)
exit (1)

Internally, hypy consists of:

• tool-specific python scripts, which contain the logic for running each tool, producing a
.png plot, and parsing tool-specific output into python objects;

• a tool-independent core, which can generate models for each tool by running HyST, copy
intermediate files to and from temporary directories during processing, and call the tool-
specific scripts to perform reachability analysis, produce plots, and parse output.

Each tool-specific script contains a python class which inherits from the core’s HybridTool
class, and implements abstract methods to run the tool (run tool), produce a plot (make image),
and parse tool output into a python object (make output). The input format is SpaceEx’s
SX [14] model format, which is converted using HyST into the formats of the individual tools.
The generic HybridTool class contains logic to create temporary directories and copy model
files to them, run the tool, produce plots and parse output (by calling the appropriate abstract
method from the tool-specific script), and copy result files back. Tool-specific scripts are also
individually runnable on model files for that particular tool, which enables easy GUI integration
(for example, right-click a model file, ‘Run with Flow∗’).

The hypy core’s main programmatic interface is through an Engine class, which contains
instances of every implemented HybridTool object. Scripts that use hypy can instantiate an
Engine object, and then call various methods to customize the computation, outlined in Table 1.
Scripts can then call the run method to perform the conversion, computation, and/or produce
the image output, and then get result to get the tool-specific parsed output object.

2



High-level Hybrid Systems Analysis with Hypy S. Bak, S. Bogomolov, and C. Schilling

Engine Method Name Purpose
set tool selects which tool to run
set model sets the input model path
set timeout sets a timeout while running
set save model path sets whether to save converted

model output by HyST
set output image sets the output image path
set print terminal output sets whether to print stdout
set save terminal output sets whether to save stdout
set create result sets whether the tool-specific out-

put object should be created
set tool params sets HyST parameters

Table 1: Methods callable on Engine objects in hypy.

Hybrid systems analysis tools require individual attention in order to be run, produce plots,
and interpret output.

In terms of running, SpaceEx and dReach accept the input model file on the command-line.
SpaceEx splits the input model into two files, an automaton description and a configuration
file which specifies the initial states and various tool parameters. dReach has a command-line
parameter indicating the number of discrete transitions to unroll when performing a check.
HyCreate also has the model file passed in on the command line, but a flag is needed to run it
in batch mode where the GUI does not appear. Flow∗ reads the model file input from stdin.

Plotting a .png image output result is also tool-specific. SpaceEx outputs a data file which
can be processed to the graph tool (with the appropriate flags to produce a .png image).
dReach, when run with the appropriate flag, can output a visualization JSON file, which can
then be displayed by starting a local web server and setting up an HTML file which runs
Javascript to load the JSON data1 [20]. HyCreate directly outputs a .png plot. Flow∗ can
output a gnuplot script. This script is called using the gnuplot program which creates an
encapsulated postscript (.eps) image. This image is then loaded using gimp, rotated to be
upright, and converted to a .png using gimp’s script-fu interface.

Each tool’s output is in a slightly different format. Currently, the tool-independent core
automatically saves any stdout output produced while a tool is running, along with time stamps
of when the output was produced. Tool scripts can perform additional processing on either the
output produced by the tools, or the text printed to stdout. The SpaceEx-specific script can
read the output file produced when the INTV output mode is selected, which gets parsed into
a python object containing the names of every reachable mode, and the interval ranges for
every variable both globally and within each mode. Additionally, the stdout output printed is
examined to determine if SpaceEx converged or reached the maximum number of iterations.
The Flow∗-specific script processes the stdout output into a python list that describes each mode
where computation was performed, and the amount of reachability time computed in each mode.
Additional output processing can be added to hypy as the needs arise. The lines of python code
for each of the tool-specific scripts is provided in Table 2. Tools which currently support more
advanced output processing (SpaceEx and Flow∗) have slightly larger implementations.

3 Case Studies

Hypy eases implementations of high-level analysis for hybrid systems models. For each appli-
cation, a script must be written that can make use of hypy’s ability to run HyST and then

1This process would then require further processing to convert it to a .png and has not been implemented
in hypy.

3



High-level Hybrid Systems Analysis with Hypy S. Bak, S. Bogomolov, and C. Schilling

Script Filename Lines of Code
tool spaceex.py 274
tool flowstar.py 128
tool hycreate.py 59
tool dreach.py 57

Table 2: The lines
of code for the
hypy tool-specific
scripts.

interpret the output of the computation. The script contains application-specific logic on how
the model should then be modified for subsequent computations. In this section, we present
three different applications that demonstrate various use-cases for hypy.

3.1 Model Parameter Identification

In the first case study, we extend a recent approach to do parameter identification for multiaffine
systems [9], implemented in the Hydentify tool. Given a parametric system with multiaffine
dynamics, a parameter domain, and a safety specification, the authors present a technique
for identifying polytope-shaped parameter classes which guarantee that the system meets its
specification. The algorithm identifies parameter equivalence classes and performs a hierarchi-
cal search in this space. For each equivalence class, the algorithm abstracts the system to a
linear hybrid automaton (LHA) which is then analyzed by SpaceEx. When SpaceEx reports
a violation, the search algorithm proceeds recursively by partitioning the currently considered
parameter equivalence class into two subclasses.

We make two key observations here. First, the LHA are considered in a hierarchical tree-
like manner, which induces a parent-child relation between them. Therefore, by construction,
it always holds that the trajectory set of a parent-LHA encompasses the trajectories of every
child-LHA. Second, while the dynamics become more restrictive and transitions may become
unused, all LHA have the same discrete modes.

From these observations we conclude that, if a mode is not reachable in a parent-LHA, then
it is also not reachable in all child-LHA and thus can be removed from consideration here.
This step improves performance in two computationally time-intensive phases of the parameter
identification algorithm: (1) input model parsing and data structure initialization in SpaceEx,
which involves slow hard-disk operations; and (2) computation of LHA abstractions for every
parameter equivalence class, which relies on expensive polytope operations.

Hydentify by default uses a SpaceEx version which stops as soon as a specification violation
is detected. In this way, the run time is improved as exhaustive fixpoint analysis is avoided.
We observe that, for the modification described above to be sound, modes can be removed in
the child-LHA only after a fixpoint has been detected. Therefore, an exhaustive analysis is of
necessity, which raises the question of whether the time saved due to model trimming outweighs
the overhead due to exhaustive reachability analysis.

We incorporated hypy into the existing Hydentify computation flow to explore this trade-off.
Rather than running SpaceEx directly, a 59-line python script was made which used hypy to
run the tool and interpret its output. When SpaceEx terminates, it also outputs all reachable
states. Hypy parses this output into a data structure to the custom script, which then writes a
file containing the names of all modes that are reachable. In addition, hypy adds the information
of whether a fixpoint was found or not, which is normally output on stdout from SpaceEx. Then
Hydentify parses the output of the script and, if a fixpoint was found, marks the reached modes
in an internal data structure. Afterward, Hydentify proceeds in the normal way while ignoring
all unmarked (unreachable) modes.

To evaluate our extension, we consider a cardiac cell model which can be used to analyze

4



High-level Hybrid Systems Analysis with Hypy S. Bak, S. Bogomolov, and C. Schilling

Max. Modes Run Time
Level Saved (sec)

0 – 7,172
1 85 4,368
2 85 4,397
∞ 92 6,867

Table 3: The largest run time
saving occurs when the hypy trim-
ming strategy is used only at the
first level of abstraction.

excitement conditions of the ventricular myocytes [18]. We compare the performance of the
original Hydentify implementation and the adjusted version which embeds hypy as part of the
workflow. The standard version of Hydentify produces 54 different LHA, each with 128 modes,
which takes 2 hours in total.

We first ran the new modification using the hypy trimming strategy for all LHA in the
search tree. The run time was slightly reduced by 5 minutes, which is not too significant.
Notice, however, that saving a mode on a higher level of the search tree, near to its root, has a
larger impact compared to mode trimming on lower levels as absence of modes is propagated
to all child-LHA. Hence, we then investigated a hybrid approach and used our extension in the
first k levels of the search hierarchy only and switched back to the old behavior of Hydentify
for all later runs. Having applied an exhaustive reachability analysis to the root LHA only, i.e.,
k = 1, we already saved 85 modes and 46 minutes of run time. While applying hypy also for
the second level, i.e., k = 2, we cannot remove more modes, and consequently the run time gets
worse by 29 seconds due to two (unnecessary) fixpoint computations in SpaceEx. We observed
a continuing increase in run time for k > 2, and the number of removed modes only goes up
to 92 at most. The results are summarized in Table 3. Using hypy, we were able to quickly
investigate a trade-off between model trimming and exhaustive reachability analysis.

3.2 Pseudo-Invariants

The method of pseudo-invariants [4] is a technique used to improve the accuracy and speed
of reachability computation. Many tools that do reachability computation are flow-pipe con-
struction methods. These methods compute the continuous-post operation by tracking the
currently reachable set of states at specific points in time. The set of states being tracked
can quickly become quite complex, and the tools will compute overapproximations of this true
set of reachable states, which is sufficient for safety guarantees. For example, Flow∗ uses a
Taylor model [22] representation, and SpaceEx can use a polyhedral, zonotope, or support
function representation. This simplification, however, leads to wrapping-effect error [21] in the
computation.

Wrapping-effect error can sometimes be reduced in the computation by splitting a single
mode of the hybrid automaton into multiple modes. The dynamics and discrete transitions
remain unchanged, and the only difference is that artificial invariants and guards are used to
create discrete transitions at specific boundaries in space. When the invariant becomes false,
a discrete transition is taken to the copied mode, which has identical dynamics and discrete
successors. Theoretically, this does not change the reachable set of states. Practically, however,
the discrete transition effectively pauses the flow-pipe construction process along its boundary.
This can significantly reduce the size of the set of states that needs to be tracked, reducing
computation time and overall error.

A key concern with pseudo-invariants is how to come up with them: at what boundaries in
space should discrete transitions be forced? HyST provides two options for applying pseudo-
invariants to a model. First, the user can manually provide a sequence of auxiliary hyperplanes
to act as the pseudo-invariant boundaries. Second, the user can provide a set of simulation times,

5



High-level Hybrid Systems Analysis with Hypy S. Bak, S. Bogomolov, and C. Schilling

Compute
Reachability

No Progress: Error,
bad initial parameters

Compute
Reachability

Partial Result:
Add pseudo-invariant

at 50% of time elapsed
before error occurred

Done:
Completed successfully

Start

Done:
Completed successfully

Add pseudo-invariant
at 50% of time elapsed

in last mode

Split all 
pseudo-invariant 

times in half

Partial result
(< 10 iterations)

Partial Result
(10 iterations):
Error, give up

Yes No

Reached
All Modes?

Figure 1: The logic to automatically create pseudo-invariants is encoded into a 123-line python
script which uses the hypy library to run Flow∗ and parse its output.

and HyST will perform a simulation for those amounts of time from the center of the initial
set. Auxiliary hyperplanes are then inserted at the resultant points, in directions orthogonal to
the gradient of the dynamics at each point. Both options, however, require the user to provide
parameters.

We wrote a script which uses hypy to make the process completely automatic. The script first
runs Flow∗ on the initial model. When Flow∗ reports a problem due to too much representation
error during flow pipe construction (“The remainder estimate is not large enough.”), the script
uses hypy to look at the tool’s output in order to examine the point in time of the computation
(reachability time, not wall time) when the error occurred. A time of 50% of the error time
is then used as the simulation time in order to derive the auxiliary hyperplane for use in the
HyST transformation pass. In this way, a discrete transition is forced before too much error is
accumulated by Flow∗. The tool is then run again. If another error occurs during computation,
and all the modes were reached, then another auxiliary hyperplane is inserted by splitting the
time elapsed in the final mode. If not all modes were reached, all pseudo-invariant times are
split in half. Using the new simulation times, HyST is run again and the process repeats, up
to 10 iterations. The logic for this hypy script is shown in Figure 1.

We evaluated the proposed strategy on two examples.
The first example is a 2-D neuron model which was previously used to evaluate nonlinear

reachability techniques [15]. The dynamics for this system are ẋ = x − x3 − y + 0.875, and
ẏ = 0.08 ∗ (x + 0.7 − 0.8 ∗ y), and we use the same initial set of states as the earlier work,
(x, y) ∈ [0.9, 1.1] × [2.4, 2.6]. Using the unmodified model, Flow∗ does not successfully finish
computing reachability, but rather produces a remainder-estimate error after 25.45 seconds of
reachability time. The created script detects this, uses HyST to insert a pseudo-invariant at
simulation time 12.725, and reruns Flow∗. Reachability then completes successfully for the

6



High-level Hybrid Systems Analysis with Hypy S. Bak, S. Bogomolov, and C. Schilling

Initial
States

(a) Initial Reachable Set

Initial
States

(b) With Pseudo-Invariant

Figure 2: Reachability using Flow∗ for the neuron system.

Initial
States

(a) Initial run

Initial
States

(b) Iteration 1

Initial
States

(c) Iteration 2

Initial
States

(d) Iteration 3

Initial
States

(e) Iteration 4

Figure 3: Reachability plots using Flow∗ for the Van der Pol system.

modified model. The reachability plots for both runs are shown in Figure 2.

Second, we evaluate the Van der Pol oscillator, with dynamics ẋ = y, ẏ = (1− x2) ∗ y − x.
We use a parameterized initial set, where initially y ∈ [2.28, 2.32] and x ∈ [1.25, 1.25 + 0.01∗w].
In earlier work [19], a novel Runge-Kutta based method which uses rigorous numerics based on
affine arithmetic was formalized in Isabelle/HOL, and could successfully compute reachability
on this model up to w = 175 (x ∈ [1.25, 3]) in about 70 seconds. Furthermore, the approach
was compared to Flow∗ with manually derived auxiliary hyperplanes up to w = 75, after which
the authors reported that they were “unable to come up with hyperplanes that would allow
Flow∗-PI integration for larger values of w.” Manually coming up with pseudo-invariants can
be difficult.

Using the developed script, reachability for this model was computed using a significantly
larger initial set, with w = 300 (x ∈ [1.25, 4.25]). After multiple runs of HyST and Flow∗, the
automated approach eventually succeeded after inserting pseudo-invariants at simulation times
0.22, 0.77, 1.84, and 3.185. The script took 215 seconds for all the iterations to complete, 73 of
which were on the final (successful) iteration. The reachability result for each iteration of the
tool is shown in Figure 3.

With the created hypy script, the method of pseudo-invariants then can be used in a com-
pletely automated fashion. This also demonstrates the integration of hypy with both HyST and
a reachability tool inside a larger iterative loop.

3.3 Tool Parameter Tuning

Tools for computing reachability often contain many parameters which may need to be carefully
tuned in order to successfully analyze reachability for a particular model. An expert for a partic-
ular tool has an intuitive sense as to how changing these parameters is likely to affect accuracy
and computation time. A novice in the tool is thus likely to spend significant time finding out
and tuning each of the parameters, or may falsely conclude a given tool cannot analyze a model
because the parameters she used were incorrect. Hypy can be used to create parameter-tuning
strategies, where a model is analyzed multiple times using different parameters in order to try

7



High-level Hybrid Systems Analysis with Hypy S. Bak, S. Bogomolov, and C. Schilling

to find a valid parameter setting.

Flow∗ contains several options which affect its accuracy and performance. In particular,
the time step, order of the Taylor models, and the remainder estimate will affect the quality
of the result. An incorrect setting in any of these and the tool may exit before completing the
reachability computation, or take excessively long to complete.

We created a proof-of-concept 112-line hypy script which selects these parameters with the
goal of producing a configuration that can complete the computation for a given model. The
input to the tuning process is the model file together with the duration of desired reachability
time. The encoded strategy is simple, and consists of three nested loops. In the outer loop,
the time step is selected, trying, in order, 1

100 , 1
400 , 1

800 , 1
3200 , and 1

12800 of the total desired
reachability time. In the middle loop, the Taylor model order is picked, trying, in order, 2, 4,
and 6. Finally, the inner-loop iterates on the remainder estimate, which is used as a check to
ensure the Picard Iteration used in the Taylor Model reachability approach is converging. The
inner loop checks the values 1e-9, 1e-5, and 1e-2. The intuition behind these parameter choices
is that it is generally better to try more restrictive parameters first, as these are more likely to
result in an error quickly, and generally take less time if they are successful.

In addition to the nested loops, HyST is used to generate the Flow∗ models, which au-
tomatically chooses which of the integration modes to use in each location of the automaton
based on the types of dynamics and the number of dimensions (‘poly ode 1’ for less than 3
dimensions, ‘poly ode 2’ for 4 to 6 dimensions, ‘poly ode 3’ for more than 6 dimensions, and
‘nonpoly ode’ if nonpolynomial dynamics are used). Based on the advice in the Flow∗ manual,
QR preconditioning is used if there are less than four variables; otherwise identity precondi-
tioning is selected. As soon as a set of parameters is found where reachability can be computed
to the desired time, the process is considered successful. The process can fail if Flow∗ takes
more than an hour computing with a given set of parameters, or if all the parameters are tried
and none succeed.

We ran the automatic parameter selection script on a number of models from the Flow∗ case
studies [12], where model files with hand-tuned parameters were provided for comparison. The
results are shown in Table 4. The ‘Tune Sec’ column shows the amount of time spent tuning
the model, before the final (successful) run of the tool. The ‘Run Sec’ column is the run time
for the final run to be completed.

Of the 7 models tried, the strategy succeeded in finding working parameters for 4 of them.
For the lorenz long model, the tool reached the one hour timeout while computing, and may
have completed if given more time. For the biology7 model, the tool also timed out after
running for an hour, but without indicating any progress on stdout, which could indicate a bug
in Flow∗ and would require more investigation. For the tank model, all parameters were tried
in less than a minute without completing successfully. Examining the hand-tuned parameters
in the Flow∗ case study model, the provided file uses per-variable remainder estimates, rather
than having the same value for all variables. Since our script does not do this, it could not find
a valid set of parameters for this model.

The purpose of this case study was to demonstrate using hypy to perform automated pa-
rameter tuning, not necessarily to develop the best parameter tuning strategy. Despite its
simplicity, the developed script was successful on more than half of the models tried. More
complicated strategies, for example, strategies that perform per-variable remainder estimate
selection, could be created to increase the number of models that can be analyzed automati-
cally. Completely automatic analysis is not just useful for new users of tools, but could also
enable tool competitions, which have proven beneficial to the SAT solving tool community.

8



High-level Hybrid Systems Analysis with Hypy S. Bak, S. Bogomolov, and C. Schilling

Model Tune (sec) Run (sec) Step Order Rem
brusselator 3.90 18.47 0.15 6 1e-2
lorenz short 2.48 12.26 0.01 4 1e-2

bio9 15.19 10.14 0.0005 2 1e-2
3dstable 7.82 110.64 0.025 4 1e-2

tank 50.90 - - - -
lorenz long 7787.46 - - - -

bio7 3604.07 - - - -

Table 4: Automatic tool parameter tuning in Flow∗.

4 Related work

In the last decade, significant effort has been devoted to address semantical differences between
tools for hybrid systems.

Sangiovanni-Vincentelli et al. suggested the hybrid systems interchange format (HSIF) [10,
23] for this purpose.

Bogomolov et al. [8] suggested to use the Function Mock-up Interface (FMI) in order to
co-simulate hybrid systems. In that setting, the authors give up on finding a “common denom-
inator” of the tools semantics, but augment the simulation engine with a common API which
enables tool synchronization. Unfortunately, at the current stage the FMI framework can be
applied only in the simulation setting and does not provide any means to ensure interoperability
between tools in the verification setting.

As already outlined, Bak et al. [5] presented the HyST framework for source-to-source trans-
formation of hybrid models. In this work, hypy builds on the HyST machinery and particularly
internal hybrid systems representation to transfer hybrid system models between different tools.

5 Conclusion

Hypy is a python-based library that enables quick development of complex, high-level analysis
strategies that require multiple runs of hybrid systems reachability tools.

We demonstrated three applications which use hypy: Iterative parameter identification,
completely automatic synthesis of pseudo-invariants, and tool parameter tuning for Flow∗.
Each of these applications contained a short script file, which called the appropriate hypy
methods in order to run the analysis tools or modify the system model using the HyST model
transformation tool.

Further analysis methods are envisioned using hypy. Portfolio approaches are possible, where
multiple tools are run in parallel and the result is used from the one which terminates first.
Additionally, ensuring that computed reach sets intersect between outputs of different tools can
be used as a way to detect implementation bugs.

Acknowledgments

DISTRIBUTION A. Approved for public release; Distribution unlimited. (Approval AFRL PA
#88ABW-2015-5083)

This research was supported in part by the European Research Council (ERC) under grant
267989 (QUAREM) and by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE)
and Z211-N23 (Wittgenstein Award).

9



High-level Hybrid Systems Analysis with Hypy S. Bak, S. Bogomolov, and C. Schilling

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicolin, A. Olivero, J. Sifakis,
and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 1995.

[2] R. Alur, T. Dang, and F. Ivancic. Counter-example guided predicate abstraction of hybrid systems.
In Tools and Algorithms for the Construction and Analysis of Systems, pages 250–271, 2003.

[3] S. Bak. Hycreate: A tool for overapproximating reachability of hybrid automata. Demo and
Poster Session, ACM/IEEE 16th International Conference on Hybrid Systems: Computation and
Control (HSCC 2013), 2012.

[4] S. Bak. Reducing the wrapping effect in flowpipe construction using pseudo-invariants. In Pro-
ceedings of the 4th ACM SIGBED International Workshop on Design, Modeling, and Evaluation
of Cyber-Physical Systems, CyPhy ’14, pages 40–43, New York, NY, USA, 2014. ACM.

[5] S. Bak, S. Bogomolov, and T. T. Johnson. HyST: a source transformation and translation tool for
hybrid automaton models. In Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control, HSCC, Seattle, WA, USA, April 14-16, 2015, pages 128–133. ACM,
2015.

[6] S. Bogomolov, A. Donzé, G. Frehse, R. Grosu, T. T. Johnson, H. Ladan, A. Podelski, and
M. Wehrle. Guided search for hybrid systems based on coarse-grained space abstractions. In-
ternational Journal on Software Tools for Technology Transfer, pages 1–19, 2015.

[7] S. Bogomolov, G. Frehse, M. Greitschus, R. Grosu, C. S. Pasareanu, A. Podelski, and T. Strump.
Assume-guarantee abstraction refinement meets hybrid systems. In Hardware and Software: Ver-
ification and Testing - 10th International Haifa Verification Conference, HVC 2014, Haifa, Israel,
November 18-20, 2014, LNCS, pages 116–131. Springer, 2014.

[8] S. Bogomolov, M. Greitschus, P. G. Jensen, K. G. Larsen, M. Mikucionis, T. Strump, and S. Tri-
pakis. Co-simulation of hybrid systems with SpaceEx and Uppaal. In Proceedings of the 11th
International Modelica Conference, 2015.

[9] S. Bogomolov, C. Schilling, E. Bartocci, G. Batt, H. Kong, and R. Grosu. Abstraction-based
parameter synthesis for multiaffine systems. In Hardware and Software: Verification and Testing
- 11th International Haifa Verification Conference (HVC), LNCS. Springer, 2015. to appear.

[10] L. P. Carloni, R. Passerone, A. Pinto, and A. L. Sangiovanni-Vincentelli. Languages and tools for
hybrid systems design. Foundations and Trends in Electronic Design Automation, 1, 2006.

[11] X. Chen, E. Abraham, and S. Sankaranarayanan. Taylor model flowpipe construction for non-
linear hybrid systems. 2013 IEEE 34th Real-Time Systems Symposium, 0:183–192, 2012.

[12] X. Chen, E. Abraham, and S. Sankaranarayanan. Constructing flowpipes for continuous and
hybrid systems: Case-studies. Online, 2013.

[13] E. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg, and M. Theobald. Verification of hybrid
systems based on counterexample-guided abstraction refinement. In Tools and Algorithms for the
Construction and Analysis of Systems, 2003.

[14] S. Cotton, G. Frehse, and O. Lebeltel. The SpaceEx modeling language.
http://spaceex.imag.fr/documentation/user-documentation/spaceex-modeling-language-33,
2010.

[15] T. Dang and R. Testylier. Reachability analysis for polynomial dynamical systems using the
Bernstein expansion. Reliable Computing, 17(2):128–152, 2012.

[16] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. SpaceEx: Scalable verification of hybrid systems. In Computer Aided Verification
(CAV), LNCS. Springer, 2011.

[17] S. Gao, S. Kong, and E. Clarke. Satisfiability modulo ODEs. In International Conference on
Formal Methods in Computer-Aided Design (FMCAD), 2013.

[18] R. Grosu, G. Batt, F. Fenton, J. Glimm, C. L. Guernic, S. Smolka, and E. Bartocci. From cardiac
cells to genetic regulatory networks. In In Proc. of CAV’11, the 23rd International Conference on

10



High-level Hybrid Systems Analysis with Hypy S. Bak, S. Bogomolov, and C. Schilling

Computer Aided Verification, LNCS, Cliff Lodge, Snowbird, July 2011. Springer Verlag.

[19] F. Immler. Verified reachability analysis of continuous systems. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). 2015.

[20] S. Kong. How to use ODE visualization. Github, 2014.

[21] R. Moore. Interval analysis. Prentice-Hall series in automatic computation. Prentice-Hall, 1966.

[22] M. Neher, K. R. Jackson, and N. S. Nedialkov. On Taylor model based integration of odes. SIAM
J. Numer. Anal, 45, 2007.

[23] A. Pinto, L. Carloni, R. Passerone, and A. Sangiovanni-Vincentelli. Interchange format for hybrid
systems: Abstract semantics. In J. P. Hespanha and A. Tiwari, editors, Hybrid Systems: Compu-
tation and Control, volume 3927 of LNCS, pages 491–506. Springer Berlin Heidelberg, 2006.

11


	1 Introduction
	2 Hypy Organization
	3 Case Studies
	3.1 Model Parameter Identification
	3.2 Pseudo-Invariants
	3.3 Tool Parameter Tuning

	4 Related work
	5 Conclusion

