
Eliminating Spurious Transitions in Reachability with
Support Functions

Goran Frehse
Université Grenoble 1 Joseph

Fourier - Verimag

Sergiy Bogomolov
IST Austria

University of Freiburg

Marius Greitschus
University of Freiburg

Thomas Strump
University of Freiburg

Andreas Podelski
University of Freiburg

ABSTRACT
Computing an approximation of the reachable states of a
hybrid system is a challenge, mainly because overapproxi-
mating the solutions of ODEs with a finite number of sets
does not scale well. Using template polyhedra can greatly
reduce the computational complexity, since it replaces com-
plex operations on sets with a small number of optimization
problems. However, the use of templates may make the over-
approximation too conservative. Spurious transitions, which
are falsely considered reachable, are particularly detrimental
to performance and accuracy, and may exacerbate the state
explosion problem. In this paper, we examine how spurious
transitions can be avoided with minimal computational ef-
fort. To this end, detecting spurious transitions is reduced
to the well-known problem of showing that two convex sets
are disjoint by finding a hyperplane that separates them. We
generalize this to flowpipes by considering hyperplanes that
evolve with time in correspondence to the dynamics of the
system. The approach is implemented in the model checker
SpaceEx and demonstrated on examples.

Categories and Subject Descriptors
G.1.7 [Numerical Analysis]: Ordinary Differential Equa-
tions—Initial value problems

Keywords
Hybrid systems, verification, reachability, tools

1. INTRODUCTION
A major bottleneck in computing the reachable states of

a hybrid automaton is the overapproximation of the states
reachable by time elapse, i.e., conservatively approximating
all solutions of the ODEs over a given time horizon with

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
HSCC ’15, Apr 14-16, 2015, Seattle, WA, USA
Copyright 2015 ACM 978-1-4503-3433-4/15/04.
http://dx.doi.org/10.1145/2728606.2728622.

suitable collection of sets. We call this flowpipe approxima-
tion. Support functions lead to a scalable algorithm that
can be arbitrarily precise [10], and similar techniques can
be applied using template polyhedra [13, 4]. The approxi-
mation error depends on the time step and the directions in
which the support function is evaluated.

In our experiences with applying scalable flowpipe approx-
imation algorithms, the number of continuous sets that are
produced tends to grow quickly and become a limiting fac-
tor. Clustering is usually applied to help reduce this number,
and optimal clustering can be carried out with support func-
tions [7]. This number of sets is aggravated dramatically by
spurious transitions, i.e., transitions that are enabled as an
artifact of the overapproximation. The approximation accu-
racy can be improved by reducing time steps and increasing
the number of directions, but if done indiscriminately this
leads to large computational cost: to guarantee a Hausdorff
error of ε in n dimensions, the support function must be
evaluated O(1/εn−1) times [11].

We propose a procedure to show that a transition is spu-
rious, i.e., its guard set is unreachable. It aims at using as
few directions as possible, and adjusting the accuracy au-
tomatically. We call this separating the guard set from the
flowpipe (as opposed to safety), in order to differentiate it
from showing safety over all runs of the hybrid automaton.
Our approach is based on the separation of two convex sets:
efficient algorithms are known that produce a hyperplane
separating the two sets, and its normal vector is a suitable
template direction for the support function algorithm.

We propose two different ways to turn the flowpipe sep-
aration problem into a sequence of convex separation prob-
lems. In a convexification-based approach, we approximate
the flowpipe with a finite number of convex sets as in [7].
To each of these sets, we apply the above convex separa-
tion algorithm. In a point-wise approach, we run the convex
separation algorithm at discrete points in time. The result
(separation or overlap) is propagated along the time axis us-
ing continuous-time bounds on the support function of the
flowpipe computed as in [7]. The main contributions of the
paper are as follows:

• We propose a novel construction of inner approxima-
tions of convex sets based solely on support functions,
while previous work assumes that actual points in the
set are known. This construction is sound even for
approximate computations. (Sect. 2.1)

• We propose a novel procedure for separating convex
sets using only approximately computed values of sup-
port functions. To the best of our knowledge, this is
the first such procedure using only support functions
(not support vectors) and the first that is sound even
for approximate computations. (Sect. 4.1)

• For the point-wise approach, we incorporate both static
directions, where we check for how long the same hy-
perplane (possibly shifted) still separates the flowpipe
(Sect. 5.2.1), and dynamic directions, where we rotate
the separating hyperplane with the adjunct dynamics
of the system (Sect. 5.2.2). These methods are com-
plementary since there are systems where either one or
the other technique, but not both, can show separation
over an infinite time horizon.

The problem of showing that a given “unsafe” set (in our
case, the guard set) is not reachable is known as the safety
problem. Various approaches exist, and due to lack of space
we cite only a small selection. In [2], predicate abstractions
are used to refute counterexamples of hybrid systems. The
separating hyperplanes that we construct can be viewed as
such predicates, although in our setting they need only be
satisfied over intervals of time. In [5], abstractions based on
eigenforms are refined using counter examples until safety
is shown. However the approach is limited to deterministic
dynamics, while we can handle additive nondeterminism in
the ODEs. Alternating forward and backward reachability
between the initial and the unsafe set can be used to show
safety, but there are inherent problems with numerical ac-
curacy, since a stable system becomes unstable when going
backwards in time [12]. The main difference to all these
approaches is that we are only looking for a technique to de-
tect as quickly as possible when a set is unreachable within
a location; the goal is not to decide the safety problem.

The remainder of the paper is organized as follows. In
the next section, we present approximate support functions,
which we use to represent convex sets that can be only com-
puted approximately. In Sect. 3, we briefly recall the flow-
pipe approximation from [7], which uses approximate sup-
port functions, and relate spurious transitions to flowpipe
separation. In Sect. 4, we present our algorithms for approx-
imating and separating convex sets based on approximately
computed support functions. These algorithms are applied
to flowpipe separation using convexification in Sect. 5.1, and
using point-wise separation in Sect. 5.2. Experimental re-
sults are shown in Sect. 6. For lack of space, some proofs
were omitted from this paper; they can be found in [6].

2. REPRESENTING SETS WITH APPROX-
IMATE SUPPORT FUNCTIONS

A convex set can be represented by its support function,
which attributes to each direction in Rn the signed distance
of the farthest point of the set to the origin, see Fig. 1. Com-
puting the value of the support function for a given set of
directions, one obtains a polyhedron that overapproximates
the set. In this paper, we consider this computation to be
approximative, i.e., only a lower and an upper bound on the
support function can be computed.

We recall some basics. A halfspace H ⊆ Rn is the set
of points satisfying a linear constraint, H =

{
x | aTx ≤ b

}
,

where a = (a1 · · · an) ∈ Rn and b ∈ R. A polyhedron P ⊆ Rn

`
ρP(`)

P

0

(a) support function

`3

`4

`1

`2

P

dPeL

(b) outer approximation

Figure 1: Evaluating the support function in a set of
directions gives a polyhedral outer approximation

is the intersection of a finite number of halfspaces

P =
{
x
∣∣∣ ∧m

i=1
aTix ≤ bi

}
,

where ai ∈ Rn and bi ∈ R. For brevity, we will sometimes
just write P =

{∧m
i=1a

T
ix ≤ bi

}
. A polytope is a bounded

polyhedron. The convex hull CH(X) ⊆ Rn of a set X is

CH(X) =
{ m∑
i=1

λivi

∣∣∣ vi ∈ X , λi ∈ R≥0,

m∑
i=1

λi = 1
}
.

The support function of a closed and bounded continuous
set X ⊆ Rn with respect to a direction vector ` ∈ Rn is

ρX (`) = max
{
`Tx

∣∣ x ∈ X}.
The set of support vectors of X in direction ` is

σX (`) =
{
x∗ ∈ X

∣∣ `Tx∗ = ρX (`)
}
.

2.1 Approximate Support Functions
An approximate support function is a function support that

given a direction ` and an accuracy ε > 0 produces an upper
bound on the support function. We require the bound to be
within ε of the true value:

support(X , `, ε)− ε ≤ ρX (`) ≤ support(X , `, ε). (1)

Computing an approximate support function for a given set
of directions provides an outer and an inner approximation
of the set. Consider a set of directions L = {`1, . . . , `N} and
values s+k = support(X , `k, ε) for k = 1, . . . , N . This gives
the outer approximation

dXeL =
⋂

k=1,...,N

{
`Tkx ≤ s+k

}
, (2)

which satisfies X ⊆ dXeL. At least one point x ∈ X is inside
the facet slab associated with `k,

bXck = dXeL ∩
{
`Tkx ≥ s+k − ε

}
. (3)

Using these constructs, we have the following bounds on the
support function of X .

Lemma 2.1. [7] Given directions L = {`1, . . . , `N}, let
s+k = support(X , `k, ε) for k = 1, . . . , N . For any ` ∈ Rn,
ρ−X (`) ≤ ρX (`) ≤ ρ+X (`), where

ρ+X (`) = ρdXe(`), (4)

ρ−X (`) = max
k=1,...,N

−ρbXck (−`). (5)

Given any points c1, . . . , cN ∈ dXeL, we propose the fol-
lowing construction to obtain an underapproximation of X :

Proposition 2.2. Given a set of points c1, . . . , cN ∈ dXeL,
let ai be the normal vectors of their convex hull, i.e.,

CH(c1, . . . , cN) =
{∧M

i=1
aTix ≤ bi

}
.

Let Ji be the indices of the points that lie on the border of
the i-th constraint, i.e., Ji =

{
j
∣∣ aTicj = bi

}
, and let

b−i = min
j∈Ji
−ρbXcj (−ai).

Then the set C− =
{
c
∣∣ ∧M

i=1a
T
ic ≤ b−i

}
is a subset of X .

3. REACHABILITY WITH SUPPORT
FUNCTIONS

We consider hybrid systems modeled by a hybrid automa-
ton. An approximation of its reachable states can be ob-
tained by computing successor states with respect to time
elapse and discrete transitions (jumps), and repeating the
process until all of the successors states have been encoun-
tered in a previous step. This procedure need not terminate,
and the problem is undecidable in general. Since the details
of the reachability algorithm have been reported elsewhere
and are not essential for the results of this paper, we provide
a brief summary and refer the reader to [8].

In the following section, we define the class of hybrid au-
tomata we consider in this paper. We then recall the scalable
flowpipe approximation algorithm from [7], which is exten-
sively used in the remainder of the paper. The image compu-
tation with respect to a discrete transition is presented since
it relates eliminating spurious transitions to the problem of
separating the flowpipe from a convex set.

3.1 Hybrid Automata
A hybrid automaton H = (Loc, Inv ,Flow ,Trans, Init) is

defined as follows [1]. It has a set of discrete states Loc
called locations. Each l ∈ Loc is associated with a set of dif-
ferential equations (or inclusions) Flow(l) that defines the
time-driven evolution of the continuous variables. A state
s ∈ Loc × Rn consists of a location and values for the n
continuous variables. A set of discrete transitions Trans
defines how the state can jump between locations and in-
stantaneously modify the values of continuous variables. A
jump can take place when the state is inside the transition’s
guard set, and the target states are given by the transition’s
assignment. The system can remain in a location l while
the state is inside the invariant set Inv(l). All behavior
originates from the set of initial states Init .

In this paper, we consider Flow(l) to be continuous dy-
namics of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (6)

where x(t) ∈ Rn is an n-dimensional vector, A ∈ Rn × Rn
and U ⊆ Rn is a closed and bounded convex set. Transition
assignments are of the (deterministic) affine form

x′ = Rx+ w, (7)

where x′ ∈ Rn denotes the values after the transition, R ∈
Rn × Rn and w ∈ Rn.

We compute the reachable states by recursively computing
the image of the initial states with respect to time elapse and
discrete transitions until a fixpoint is reached. Before we can

discuss the image computation, we present how we describe
sets of states with approximate support functions.

3.2 Flowpipe Approximation
In a given location of the hybrid automaton, we refer to

the states reachable from an initial set X0 by time elapse
as the flowpipe of X0. In this paper, we assume that X0

is convex. Given an initial set X0, the reachable states at
time t is the set of values of the solutions of (6) with initial
condition x(0) ∈ X0. We denote this set with

Reacht(X0, A,U) = eAtX0 ⊕
∫ t

0

eAsUds. (8)

To simplify the notation, let Xt = Reacht(X0, A,U). For
affine dynamics, Xt is convex for any given t, so Xt can
be represented by its support function. The flowpipe from
the initial states X0 over the time interval [tb, te] is the set
Xtb,te =

⋃
tb≤t≤te

Xt.
We now summarize the flowpipe approximation algorithm

in [7]. It is based on approximating the support function of
the flowpipe over time. Given an interval [tb, te], a direction
d, and an accuracy bound ε > 0, it constructs a piecewise
linear function s+d,ε : [tb, te]→ R such that for all t ∈ [tb, te],

s+d,ε(t)− ε ≤ ρXt(d) ≤ s+d,ε(t) (9)

We denote this approximation with

s+d,ε(t) = sReach(X0, A,U , [tb, te], d, ε).

Let D = {d1, . . . , dm} be a set of directions for which
s+di,ε(t) has been computed. This defines a flowpipe approx-
imation pointwise in time,

Ωt =
⋂
di∈D

{
dTix ≤ s+di,ε(t)

}
, with Xt ⊆ Ωt

so the union Ωtb,te =
⋃
tb≤t≤te

Ωt contains Xtb,te . If the

s+di,ε(t) are piecewise linear, then Ωtb,te is a finite union of

convex polyhedra, Ωtb,te =
⋃N
j=0 Ωj . Each Ωj approximates

Xt over an interval of time [tj , tj+1], and it is possible to
construct the smallest number N of such sets for a given
bound on the total approximation error.

Each Ωj can be refined by adding template directions:
Given an additional direction d′ and accuracy ε′, one com-

putes sd′,ε′(t). If sd′,ε′(t) is concave, then {d′Tx ≤ s+d′,ε′(t)}
is convex in x and in t, and we can replace Ωj with

Ω′j =
⋃

tj≤t≤tj+1

⋂
di∈D

{
dTix ≤ s+di,ε(t)

}
∩
{
d′

T
x ≤ s+d′,ε′(t)

}
,

If sd′,ε′(t) is not concave, we split it into its concave pieces
and produce a separate Ω′j for each piece.

3.3 Eliminating Spurious Transitions
Let G be the guard set of the transition, I− the invariant of

the source location, I+ the invariant of the target location,
and let the transition assignment be (7). We assume G, I−,
I+ to be polyhedra and assume that the set of template
directions L contains the normal vectors of the constraints
of these polyhedra. Let the target invariant be

I+ =
{
x
∣∣∣ ∧m

i=1
āTix ≤ b̄i

}
.

The image of a set X with respect to a transition τ is

postτ (X) =
(
R
(
X ∩ G ∩ I−

)
⊕ w

)
∩ I+. (10)

Let G∗ be the intersection of the guard, the source invariant,
and the back-transformed target invariant,

G∗ = G ∩ I− ∩
{
x
∣∣∣ ∧m

i=1
āTiRx ≤ b̄i − wTāi

}
. (11)

Using G∗, the image operator can be simplified so that it
involves a single intersection operation [9]:

postτ (X) = R
(
X ∩ G∗

)
⊕ w. (12)

This has the following important consequence: We can
eliminate spurious transitions by deciding whether the flow-
pipe intersects with G∗. We call this flowpipe separation,
and our approach is to reduce the problem to separating a
number of convex sets, which is the topic of Sect. 4. The
flowpipe separation will then be discussed in Sect. 5.

4. SEPARATING CONVEX SETS USING
SUPPORT FUNCTIONS

A classic way to show that two convex sets do not overlap
is to find a hyperplane that separates them (the sets lie on
opposites sides of the plane). Efficient algorithms for finding
a separating hyperplane are known, e.g., closest points al-
gorithms like the Gilbert-Johnson-Keerthi (GJK) algorithm
or the Chung-Wang algorithm, see [14]. We refer to these
as convex separation algorithms. In this section, we propose
convex separation algorithms that differ in two aspects:

• We consider the case where only the value of the sup-
port function can be computed, while classical meth-
ods are based on computing points in the set (support
vectors).

• We take into account that the support function is com-
puted with finite accuracy, i.e., up to an interval that
contains the exact value.

The following well-known lemma expresses separation with
support functions.

Lemma 4.1 (Separation of convex sets).
Given two compact convex sets R,S, let Q = R ⊕ (−S),
i.e.,ρQ(d) = ρR(d) + ρS(−d). R and S are separated if and
only if 0 /∈ Q, or, equivalently, there is a d∗ ∈ Rn with

ρQ(d∗) < 0. (13)

If d∗ exists, any hyperplane H = {x | d∗Tx = b} with b ∈(
ρR(d∗),−ρS(−d∗)

)
separates R and S.

In the following, we present separation algorithms adapted
to approximately computing support functions.

4.1 Separation using Directed Approximation
We now propose a procedure for deciding the separation

problem, based on iteratively constructing inner- and outer
approximations ofQ. It is based on a polyhedral approxima-
tion algorithm called Mutually Converging Polytopes (MCP)
by Kamenev [11], which approximates a convex set with the
asymptotically optimal number of evaluations of the support
function.

Given Q and a given number of iterations kmax, the MCP
algorithm constructs an outer approximation Qk with at

most k facets and an inner approximation Ck with at most
k vertices as follows:

1. Start with n+ 1 affinely independent directions di. In
each direction di, compute the support vector ci of Q.
Let k := n+ 1.

2. Compute the outer approx. Qk :=
⋂k
i=1

{
dTix ≤ dTici

}
.

3. Compute the inner approx. Ck := CH(c1, . . . , ck) in
constraint representation, and let L be its set of con-
straints.

4. For each constraint aTix ≤ bi in L, compute the di-
rectional distance δi between the inner and the outer
approximation, δi := (ρQk (ai)− bi)/||ai||.
Let dk+1 := aimax with imax = argmaxi δi.

5. Compute the support vector in the new direction dk+1.

6. If k = kmax, stop. Otherwise, let k := k + 1 and go to
step 2.

The MCP algorithm has optimal convergence rate, see [11]
for details. The Haussdorff distance between the outer and
inner approximation is bounded by the value of δimax , and
converges to 0; in this sense, the algorithm is complete.

The main steps of the MCP algorithm are inherited by
our algorithm, but it differs in three important ways:

• Instead of support vectors, we use an inner estimation,
i.e., points which might not actually be in Q. This
makes the algorithm applicable to using only support
function values and to approximate computations.

• The inner estimation is used for choosing the next di-
rection, while the inner approximation (points which
are known to be in Q), is only used as a termination
criterion in case of overlap.

• We refine only in directions that are still necessary to
decide whether Q contains 0.

We use the following notation: Throughout, we use the in-
dex k to indicate the iteration. Let dk be the direction in
which the approximation is refined in the k-th iteration, and
let Dk = {d1, . . . , dk}. Let r+k = support(Q, dk, εk). Let Qk
be the outer approximation

Qk = dQeDk
=
⋂k

i=1

{
dTix ≤ r+i

}
.

Let Sk,i be the facet slab of Qk in direction di,

Sk,i = Qk ∩
{
dTi x ≥ r+i − εi

}
,

and let ck,i be a point in Sk,i lying on a facet of Qk, i.e.,

ck,i ∈ Sk,i ∩
{
dTi x ≥ ρQk (di)

}
.

Note that ck,i could be any point in Sk,i, e.g., the relative
Chebyshev center. We choose ck,i on the border of Qk be-
cause this allows for a more efficient incremental construc-
tion of the convex hull. Let Ck = CH(ck,1, ..., ck,k) be the
convex hull of the centers represented in constraint form.
Let ei be the n-dimensional vector with its i-th entry being
1 and all other entries being zero. Let ε ≥ 0 be the accuracy
used when evaluating the support function evaluation, and
let εmin ≥ 0 be a minimum accuracy that serves as termina-
tion criterion in case separation can not be decided.

Our Directed Approximation algorithm takes as inputs
Q = R⊕ (−S), an initial accuracy ε0, a termination thresh-
old accuracy εmin, and an eagerness parameter α > 1 that

−2 −1 0 1 2

−2

−1

0

1

2

−5 −4 −3 −2 −1 0 1

−4

−2

0

−2 −1 0 1 2

−2

−1

0

1

2

−5 −4 −3 −2 −1 0 1

−4

−2

0

−2 −1 0 1 2

−2

−1

0

1

2

−5 −4 −3 −2 −1 0 1

−4

−2

0

Figure 2: Demonstration of the directed approximation

algorithm (top to bottom). The left column shows the set

R (black outline), its overapproximation (dark green),

and the guard set S (red box). The right column shows

Q = R⊕(−S) (black outline), the outer approximation Qk
(dark green) and the vertices of the inner estimation Ck
(red circles). The last iteration shows separation since

the origin (black x) lies outside of Qk

represents the trade-off between sampling more directions
and using a higher accuracy. The algorithm proceeds as
follows:

1. Initialization: Choose as initial directions the normal
vectors of a regular simplex: Let di := ei for i =
1, ..., n, and dn+1 := −

∑n
i=1 ei. Let k := n + 1.

Compute r+i = support(Q, di, εi) for i = 1, . . . , k, with
εi := ε0.

2. Construct the outer approximation Qk, its facet slabs
Sk,1, . . . , Sk,k, and points on the facets ck,1, ..., ck,k.

3. Compute the convex hull Ck in constraint represen-
tation. Decide, which constraints of Ck are relevant
by measuring the directional distance between the in-
ner approximation and zero. The constraints are con-
tracted to obtain an inner approximation of Q.

(a) For each constraint aTix ≤ bi of Ck do

i. Ji :=
{
j
∣∣ aTicj = bi

}
. (indices of adjacent ci)

ii. b−i := minj∈Ji −ρSk,i(−ai).

(b) Let L =
{
aTix ≤ b−i | b

−
i < 0

}
. (constraints

already satisfied by x = 0 need not be refined)

(c) If L = {}, stop with result “overlap”

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

−3 −2 −1 0 1

−3

−2

−1

0

1

Figure 3: Example that shows the directed fashion of

the algorithm: facets in the lower left hand corner of R
are no longer refined, since it was shown that refining

them will not improve the separation result.

4. Decide in which direction to refine, based on the dis-
tance δ between the relevant constraints and the outer
approximation.

(a) For each constraint aTix ≤ b−i in L, let
δi :=

(
ρQk (ai)− b−i

)
/‖ai‖ and imax = argmaxi δi.

(b) Let dk+1 := aimax/‖aimax‖.
(c) If δimax ≤ αεk, let εk+1 := εk/10, else εk+1 := εk.

(d) If δimax ≤ εmin, stop with result “unknown”.

5. Compute an upper bound on the support function in
the new direction and with maximum error ε.

(a) r+k+1 := support(Q, dk+1, εk+1).

(b) If r+k+1 < 0, stop with result “separation”.

6. Let k := k + 1 and go to step 2.

The eagerness parameter α is motivated as follows: Even
assuming that Ck converges to within distance εk of Q (we
have no guarantee), we have that δimax → εk, which may
lead to infinitely many iterations without ever satisfying
δimax ≤ εk. Thus we must decrease εk at some point while
δimax > εk still holds, which is guaranteed by choosing
α > 1. Larger values of α lead to a faster decrease of εk.

Lemma 4.2. The result of the Directed Approximation al-
gorithm is sound if it returns “separation” or “overlap”. If it
returns “unknown”, the distance between R and S is bounded
above by

δ = min
x
‖x‖ s.t.

k∧
i=1

aTix ≤ b−i .

Proof. The soundness of the result “separation” follows
directly from (13). The soundness of the result “overlap”

follows from Prop. 2.2, which states that C− =
⋂k
i=1

{
aTix ≤

b−i
}
⊆ Q. L contains all aTix ≤ b−i with b−i < 0. Since

“overlap” results only when L = {}, we have that all b−i ≥ 0,
and therefore 0 ∈ C− ⊆ Q. Prop. 4.1 then implies overlap.

With C− ⊆ Q it follows that δ ≥ minq ‖q‖ s.t. q ∈ Q. Let
q∗ be such a minimizer. Since Q = R ⊕ (−S), this means
that there exists r ∈ R and s ∈ S such that q∗ = r− s, and
therefore ‖r − s‖ ≤ δ.

A demonstration of the directed approximation algorithm
can be seen in Fig. 2. On the left hand side, R and S are
shown. On the right hand side, the according Qk and all Ck
are shown. Fig. 3 shows the set of Ck. We observe that most
of the points are concentrated around the origin.

4.2 Adapted GJK Algorithm
Given compact convex sets R,S, a closest point algorithm

computes the (not necessarily unique) pair of points r∗ ∈ R
and s∗ ∈ S that are closest to each other. Finding such r∗, s∗

can be reduced to finding the (unique) q∗ ∈ Q closest to 0.
If q∗ = 0, then R and S overlap. Otherwise, d = q∗ is the
normal vector of a separating hyperplane as in Lemma 4.1.

The Gilbert-Johnson-Keerthi (GJK) algorithm finds such
a q∗ iteratively by computing maximizers. It takes advan-
tage of the following property: Any q ∈ Q is closest to 0 if
and only if q is the minimizer of Q in direction d = q, and
this point is unique. Note that a minimizer of Q in direction
d is a maximizer (support vector) of Q in direction −d. A
rudimentary form of the algorithm goes as follows:

1. Start from an arbitrary direction d0. Let k = 0.

2. Compute a point qk that maximizes dTkq for q ∈ Q.

3. Let q∗k be the point in CH{q0, . . . , qk} closest to 0, and
let dk+1 = −q∗k.

4. If dTkdk+1 = ‖dk‖‖dk+1‖, then stop. The point in Q
closest to 0 is q∗k.

5. Let k ← k + 1 and go to step 2.

The GJK algorithm is guaranteed to converge towards the
closest point, and terminate if Q is a polytope. Note that
if 0 ∈ CH{q0, . . . , qk}, then R and S overlap, and the algo-
rithm terminates with q∗k = 0. The termination criterion in
step 4 is usually relaxed to∣∣dTkdk+1 − ‖dk‖‖dk+1‖

∣∣ ≤ µmin

for some given tolerance level µmin ≥ 0. If one is only inter-
ested in showing separation, the criterion (13) can be used to
terminate early. Several efficiency improvements are known,
but are omitted here for lack of space.

The GJK algorithm is not directly applicable in our set-
ting, because we can only compute approximate support
functions, not the corresponding support vectors. We now
present a variation of the GJK algorithm that is solely based
on approximate support functions.

Because we can not compute maximizers of Q, we use
centers of facet slabs instead. Since these points may not
actually be in Q, we must find new directions even if 0 ∈
CH{q0, . . . , qk}. In this case, we choose the closest point on
the border of CH{q0, . . . , qk}, which tends to “push” facets
outwards in a way similar to the Directed Approximation al-
gorithm. Since we need bounded facet slabs, we start with a
bounded initial approximation. Given a set Q, error bound
ε, and a termination threshold accuracy µmin ≥ 0, our mod-
ified GJK algorithm proceeds as follows:

1. Construct an initial, bounded outer approximation to
get facet slabs.

(a) Let Dinit = {d0, . . . , dm−1} be a set of directions
of unit length that span Rn, e.g., the normals of
a regular simplex or a bounding box.

(b) Start from an arbitrary direction dm. Let k = m.

2. Estimate a point qk that maximizes dTkq for q ∈ Q.

• Compute r+k = support(Q, dk, ε). If r+k < 0, stop
with result “separation”.

• Choose qk ∈ bQck, e.g., a Chebyshev center.

3. Let q∗k be the point on the border of CH{qm, . . . , qk}
closest to 0. If 0 /∈ CH{qm, . . . , qk}, dk+1 = −q∗k/‖q∗k‖
(like GJK). Otherwise, dk+1 = q∗k/‖q∗k‖.

4. If dk+1 ∈ D, abort since an infinite cycle may take
place. Otherwise, add dk+1 to D.
If |dTkdk+1−‖dk‖‖dk+1‖| ≤ µmin, stop with result “un-
known”.

5. Let k ← k + 1 and go to step 2.

This modified GJK algorithm may not terminate, or even
converge to the point closest to 0. It is presented here be-
cause it can detect separation often much faster than Di-
rected Approximation. This will be examined closer in the
experimental section.

5. TIMED FLOWPIPE SEPARATION
The timed flowpipe separation problem is to identify the

time points where the flowpipe is separated from a given
(guard) set S. We limit our discussion to a bounded guard
set S and a finite time horizon T . If S is unbounded, one can
render it bounded by computing a coarse flowpipe approxi-
mation that is bounded due to finite T , and intersecting S
with this coarse approximation.

Definition 5.1 (Timed flowpipe separation).
Given compact convex sets X0,S ⊂ Rn and a time interval
[tb, te], a separating time domain T is a subset of [tb, te]
such that for all t ∈ T , Xt ∩ S = ∅.

Knowing the time intervals in which the system enters and
leaves the guard can be used to improve the flowpipe ap-
proximation. Similarly, timed flowpipe separation can iden-
tify at what time t′ all trajectories have left the invariant
I. Then t′ can be taken as time horizon for a more precise
flowpipe approximation. The smaller T , the more precise
(and cheaper) the flowpipe approximations can be.

In this section, we present algorithms to decide flowpipe
separation with as little computational effort as possible.

5.1 Separation using Convexification
Flowpipe separation using convexification is a straight-

forward application of the convex separation algorithms to
a flowpipe approximation consisting of a finite number of
convex sets. For each set in the approximation, a convex
separation algorithm is executed. If it shows separation on
all sets in the sequence, the flowpipe is separated. However,
it must be decided when a convex set is accurate enough, or
whether it requires being split in several parts.

We now present a separation procedure for a given initial
set X0, a guard set S and a time interval [tb, te]. It uses
the convexified flowpipe approximation from Sect. 3.2 and
a convex separation algorithm from Sect. 4.1, and returns a
set of convex sets that could not be separated from S.

1. Start with an initial accuracy ε0 and an initial set of di-
rections D = {d1, . . . , dm} that spans Rn, which guar-
antees that the approximation is bounded.

2. Apply the flowpipe approximation from Sect. 3.2 to
compute the flowpipe approximation Ω0,Ω1, . . ., using
directions D and accuracy ε0.

3. For each Ωj , run a convex separation algorithm to sep-
arate it from S, where each call to support(Ωj , d, ε) is
implemented as follows:

(a) Compute an upper bound on the support of Xt:
s+d,ε(t) = sReach(X0, A,U , [tj , tj+1], d, ε).

(b) Let ŝ(t) be the least concave upper bound on
s+d,ε(t) over the time interval [tj , tj+1]. This corre-
sponds to convexifying the set over this interval.

(c) Let s+ = maxt∈[tj ,tj+1] ŝ(t),

let εresult = ε+ maxt∈[tj ,tj+1] ŝ(t)− s
+
d,ε(t).

(d) If εresult ≤ ε, use s+ as support value for the
support function of Ωj .

(e) Otherwise, a single set does not suffice to repre-
sent the flowpipe with sufficient accuracy. Divide
[tj , tj+1] into subintervals such that on each inter-
val, the concave hull of s+d,ε(t) satisfies the condi-
tions of step 3c and 3d. Replace Ωj by restrictions
of Ωj to those subintervals. For each, apply the
convex separation algorithm again.

4. Return the Ωj , for which separation could not be shown.

The above procedure considers the flowpipe over an inter-
val to be a convex set. This is generally not true, but the
flowpipe is known to be convex at any given point in time.
This observation leads us to an alternative algorithm, which
is discussed in the next section.

5.2 Separation Point-Wise over Time
A convex separation algorithm can solve the flowpipe sep-

aration problem for any given point in time t∗, since we
know that Xt∗ is convex. However, we need to extend sepa-
ration to intervals of time. With Lemma 4.1, the following
criterion is straightforward.

Lemma 5.2. The flowpipe Xtb,te is separated from a con-
vex set S if and only if for all t ∈ [tb, te] there exists a
direction dt ∈ Rn such that

ρXt(dt) + ρS(−dt) < 0. (14)

The question is therefore how to find a suitable direction dt
for each point in time. We present two ways for applying
separation over an interval of time: first, keeping the direc-
tion d fixed over time, and second, letting dt evolve over
time according to the dynamics of the system.

5.2.1 Separating with Fixed Direction

Given a time interval [tb, te] and a fixed direction d, let

sepS,X0,A,U,d(t) = ρXt(d) + ρS(−d). (15)

Applying (14), the flowpipe is separated from S for any t ∈
[tb, te] for which

sepS,X0,A,U,d(t) < 0. (16)

Using the approach in [7], we can compute a bound on
the support function of Xt for a given precision ε > 0,
denoted by s+d,ε(t) = sReach(X0, A,U , [tb, te], d, ε). Simi-

larly, we can compute an upper bound r+d ≥ ρS(−d). Then
sepS,X0,A,U,d(t) < s+d,ε(t)+r+d , so for any t ∈ [tb, te] for which

s+d,ε(t) + r+d < 0

we have shown that Xt is separated from S. The follow-
ing example is a case where only a single, fixed, direction
(or an arbitrarily small neighborhood around it) can show
separation.

(a) Keeping the direction
shows separation over all
time, but dynamically
adapting does not

(b) Adapting the direction
shows separation over all
time, but keeping it fixed
does not

Figure 4: In both examples, separation can be shown
for the entire flowpipe after finding a separating di-
rection for the initial set

Example 5.3. Consider the example shown in Fig. 4(a).
The initial set X0 is a single point, and the flowpipe consists
of the point moving around the origin in a circle. The di-
rection d = (1, 0) shows separation even over an unbounded
time horizon, as indicated by the green arrows. By making
S large enough in the vertical direction, we can reduce the
set of separating directions (normed) to an arbitrarily small
neighborhood of d. A guard may not be separable by a sin-
gle fixed direction over the entire time horizon, as shown in
Fig. 4(b).

We can characterize precisely when separation with a fixed
direction is useful:

Lemma 5.4. A fixed direction d ∈ Rn separates a flowpipe
Xtb,te from a convex set S if and only if CH(Xtb,te) and S
are separated by d.

5.2.2 Separating with Dynamic Direction

Instead of keeping the direction fixed over time, we can
let it evolve according to the dynamics of the system. Given
a direction d0, let

dt = dT0e
−At.

If X0 is a polytope and d0 is a facet normal of X0, then dt
is a facet normal of Xt. The following example illustrates
that a single dynamic direction can show separation over the
entire time horizon.

Example 5.5. Consider the example shown in Fig. 4(a).
Starting from a direction that separates the initial set, the
dynamic direction (red arrows) shows separation for only a
small amount of time, which is even smaller if the guard set
is larger in the vertical direction. For the guard set shown
in Fig. 4(b), the dynamic direction separates over the entire
time horizon, while no fixed direction can do so.

We can reduce the separation along a dynamic direction to
the separation of the fixed direction d0, which allows us to
apply the same technique as in the previous section.

Lemma 5.6. Xt is separated from S in direction dt =
dT0e
−At if and only if sep−S,−X0,−A,U,d0(t) < 0 or, equiv-

alently, sepS,X0,−A,−U,−d0(t) < 0.

Recall that Reacht(S, A,U) as the (forward) reachable set
from S with dynamics (6). The backwards reachable set

Reach−t(S, A,U) = Reacht(S,−A,−U)

is the set reachable from S going backwards in time. Apply-
ing this interpretation to Lemma 5.6, separating X0 from S
by forward reachability with a dynamic direction is equiva-
lent to separating S from X0 by backward reachability with
a fixed direction. As a corollary of Lemma 5.4, we can char-
acterize when a dynamic direction is useful:

Corollary 5.7. A flowpipe Xtb,te can be separated from
S with a dynamic direction dt = dT0e

−At if and only if the
convex hull of the backwards reachable set from S is separated
from X0 in direction −d0.

5.2.3 Pointwise Separation Algorithm

We now describe an algorithm that uses a convex sepa-
ration algorithm pointwise in time to separate the flowpipe
from a guard set S over a time interval [tb, te]. It can be ap-
plied with fixed or dynamic directions; we present a version
that uses both. The algorithm takes as input the system de-
scription, the initial set X0, the guard set S, a time interval
[tb, te]. It returns a set of time intervals for which separation
could not be shown.

1. Picking some t∗ ∈ [tb, te], e.g., the midpoint, we use a
convex separation algorithm on Xt∗ to detect or refute
separation at time t∗. If separation cannot be shown,
stop. Otherwise, we obtain a separating direction d
and a bound ε on the required accuracy.

2. Compute s+d,ε(t) = sReach(X0, A,U , [tb, te], d, ε) and

p+d,ε(t) = sReach(S,−A,−U , [tb, te],−d, ε), as well as

r+d ≥ ρS(−d) and q+d ≥ ρX0(d).

3. Remove from [tb, te] the t where s+d,ε(t) + r+d < 0 or

p+d,ε(t) + q+d < 0 (separation holds).

4. For each of the remaining sub-intervals, apply the point-
wise separation algorithm recursively and return the
obtained intervals.

The algorithm has the weakness that it may stop prema-
turely if the separation time t∗ is poorly chosen. We propose
two improvements: First, the algorithm may be repeated on
the subintervals [tb, t

∗] and [t∗, te], until their size falls below
a given threshold. Second, the algorithm may be applied a
second (and third) time, choosing t∗ to be the start (and
end) times of the intervals instead.

Indeed, separating on start and end times may reduce the
size of the flowpipe segments, for which discrete successor
states are computed, and thus improve the approximation
accuracy of the reachability algorithm even in cases where
separation could not be shown.

6. EXPERIMENTAL RESULTS
In this section, we evaluate the presented algorithms on

two classes of benchmarks. We have implemented the al-
gorithms in the SpaceEx hybrid model checker.1 We con-
ducted the experiments on a machine with an Intel i7 3.4
GHz processor and 16 GB of RAM.

Sphere Benchmark.
We illustrate the results for the convex separation algo-

rithms from Section 4 for separating a sphere-like polytope

1A repeatability package is available at http://swt.
informatik.uni-freiburg.de/tool/spaceex/spaceex-dr

R with m from a single point S. The polytope is a conserva-
tive approximation of the unit-sphere, with all constraints
tangent to the sphere. Recall that with Lemma 4.1, any
convex separation problem can be reduced to separating one
convex set from a single point (the origin). Our benchmark
is thus equivalent to separating two sphere-approximations
(each with half the radius), which we consider to be a chal-
lenging instance.

We consider a number of benchmark instances by varying
the dimension of the sphere n, the number of constraints
m = 4n2 as well as the distance to the guard. For every
tuple (n,m, distance), we pick 10 random points S with the
given distance to R. We analyze every instance using the
adapted GJK algorithm and the directed approximation al-
gorithm. Table 1 shows the accumulated results over those
10 random points for every tuple (n,m, distance): the re-
lation of the number of the benchmark instances where a
convex separation algorithm has found the right answer be-
fore timeout (success rate), the minimum, maximum and
average of direction refinements and run-time. Timeout oc-
curs after 500 s or when 500 directions have been evaluated.
The support function of R was computed with an artificial
error of ε = 10−5.

We observe that the number of direction refinements and
runtime increase with the sphere dimensionality and the
number of constraints. As to be expected, this dependence
is weaker when the sets are farther away from each other.
When R and S are at a distance of 0.01, the minimal num-
ber of directions is exponential in n, while at a distance of 1
the increase is very weak. Note that maximum and average
figures are skewed by the timeout, which can be seen in the
success rate, see column 3 %.

The GJK algorithm generally requires fewer directions
than the DA algorithm. However, it is not sure to converge,
which can be seen in line 5: despite the low dimension and
medium distance between sets, 5% of the instances failed to
find separation before timeout. Concerning the runtime it
should be noted that the convex hull algorithms used in our
implementation leave ample room for improvement.

Circle Benchmark.
We examine the flowpipe separation algorithms on an ex-

ample similar to Fig. 5. Consider a two-dimensional system
with dynamics ẋ = −y, ẏ = x, which generate a circular or-
bit around the origin. The initial states are x ∈ [−0.5, 0.5],
y = 0.866, as shown in Fig. 5. We consider two positions
of a rectangular guard: inside the circular orbit (GI) with
the left-bottom corner of the guard at 130◦ with the positive
x-axis and 0.076 units away from the flowpipe, and outside
the circular orbit (GO) with the left-bottom corner of the
guard at 120◦ with the positive x-axis and only 0.01 units
away from the flowpipe. The results for the circle bench-
mark are presented in Table 2, for different combinations of
flowpipe separation (convexification or pointwise), convex
separation (GJK or directed approximation), and directions
(fixed or dynamic). The table shows the number of itera-
tions of the flowpipe separation algorithm (Calls), the total
number of directions evaluated overall (# d), and the run-
time. The flowpipe approximation was carried out using an
error bound of ε = 0.1 on the support function. As expected
from Ex. 5.3, the flowpipe separation with fixed directions
succeeds after a single call to the convex separation algo-

http://swt.informatik.uni-freiburg.de/tool/spaceex/spaceex-dr
http://swt.informatik.uni-freiburg.de/tool/spaceex/spaceex-dr

Table 1: Results for the sphere benchmark.

Direction Ref. Runtime

ID Algo. n m Dist. 3 % min. max. avg. min. max. avg.

1 GJK 2 16 0.01 100% 2 52 13.550 0s 0.077s 0.015s
2 GJK 3 36 0.01 95% 7 54 30.789 0.008s 0.125s 0.061s
3 GJK 4 64 0.01 85% 20 110 67.588 0.056s 0.895s 0.446s
4 GJK 5 100 0.01 55% 105 162 133.909 1.402s 6.689s 3.027s

5 GJK 2 16 0.1 95% 1 19 7.157 0s 0.021s 0.005s
6 GJK 3 36 0.1 100% 2 34 12.000 0s 0.067s 0.017s
7 GJK 4 64 0.1 95% 2 56 18.263 0.001s 0.241s 0.057s
8 GJK 5 100 0.1 65% 9 40 18.833 0.027s 0.288s 0.104s

9 GJK 2 16 0.5 100% 1 3 1.900 0s 0.002s 0s
10 GJK 3 36 0.5 100% 1 11 3.800 0s 0.015s 0.003s
11 GJK 4 64 0.5 100% 1 21 6.300 0s 0.057s 0.013s
12 GJK 5 100 0.5 95% 2 27 7.000 0.001s 1.300s 0.089s

13 GJK 2 16 1 100% 1 2 1.650 0s 0.001s 0s
14 GJK 3 36 1 100% 1 3 2.150 0s 0.002s 0s
15 GJK 4 64 1 100% 1 8 2.850 0s 0.015s 0.002s
16 GJK 5 100 1 100% 2 8 3.150 0.001s 0.026s 0.004s

17 DA 2 16 0.01 100% 2 10 6.500 0.003s 0.047s 0.023s
18 DA 3 36 0.01 95% 30 116 46.368 0.707s 33.642s 3.553s
19 DA 4 64 0.01 40% 150 210 180.875 142.302s 470.624s 309.943s
20 DA 5 100 0.01 0% — — — — — —

21 DA 2 16 0.1 100% 2 7 3.750 0s 0.027s 0.008s
22 DA 3 36 0.1 100% 7 40 18.800 0.030s 1.421s 0.306s
23 DA 4 64 0.1 95% 13 161 88.210 0.207s 188.231s 51.952s
24 DA 5 100 0.1 5% 116 116 116.000 188.580s 188.580s 188.580s

25 DA 2 16 0.5 100% 2 4 2.450 0s 0.010s 0.002s
26 DA 3 36 0.5 100% 2 13 5.500 0s 0.103s 0.028s
27 DA 4 64 0.5 100% 2 83 22.900 0.001s 23.274s 2.704s
28 DA 5 100 0.5 85% 2 113 28.000 0.001s 179.145s 20.968s

29 DA 2 16 1 100% 2 2 2.000 0s 0.002s 0s
30 DA 3 36 1 100% 2 10 3.150 0s 0.079s 0.009s
31 DA 4 64 1 100% 2 31 7.300 0s 1.396s 0.182s
32 DA 5 100 1 100% 2 40 9.050 0s 7.546s 0.671s

ID: benchmark instance ID, Algo.: convex separation algorithm (DA: directed approximation, GJK: adapted GJK algorithm), n: dimension of
the sphere, m: number of facets in the sphere-approximation, Dist.: distance between the guard and sphere-approximation, 3 %: percentage of
instances with the correct answer before timeout, # Direction Ref.: number of directions evaluated, Runtime: runtime in seconds

rithm in instance GO. Similarly to Ex. 5.5, a single call is
sufficient for dynamic directions in instance GI. Using both
static and dynamic directions gives the minimal number of
calls and directions with a negligible increase in runtime.

Fischer’s Mutual Exclusion.
The problem with spurious transitions manifests itself even

in simple hybrid systems such as Fischer’s Mutual Exclusion
protocol [3]. We consider N identical processes P1, . . . , PN ,
each with a critical section of code. The system is considered
safe if only one process can be in the critical section at any
given time. The processes communicate via a shared vari-
able k, which we model using discrete states and synchro-
nization labels. To ensure mutual exclusion, each process
follows the following protocol:

1. check if k = 0;

2. wait up to a time units;

3. write k := i;

4. wait for at least b time units;

5. read k; if k = i, go to the critical section.

The clocks τi with which the processes measure time may
run at any rate τ̇i ∈ [c, d]. It is known that the system is
safe if b > ad. The system is readily modeled using hybrid
automata, with one continuous variable per process. We

consider the parameters a = 1, b = 2.1, c = 1, d = 2.
Since our flowpipe approximation requires a bounded time
horizon in each location, we limit each step in the protocol
to a maximum duration of T = 20 time units.

The system can be verified using exact polyhedral compu-
tations. In the following, we measure performance in terms
of iterations of the reachability algorithm, where one itera-
tion corresponds to one flowpipe approximation followed by
the computation of the successor states for all outgoing tran-
sitions. The PHAVer algorithm implemented in SpaceEx
finds a fixed point after 16 iterations (0.04 s) for N = 2 and
after 47 iterations (0.5 s) for N = 3.

However, the system poses a problem for template reach-
ability. The support function algorithms from [8] and [7] did
not succeed in showing safety using typical templates such
as bounding-box directions or octagonal directions, or even
2048 uniformly distributed directions for N = 2. The dy-
namics are simple enough for exact computations, this is not
a problem of approximate support function computations.

But not only did we fail to show safety, but we also made
little progress in terms of search depth. Even for N = 2,
we were not able to find any fixed point (safe or unsafe)
within a given limit of 2000 iterations when using box direc-
tions. Furthermore, no violating states were found within
2000 iterations, simply because the search depth had not
progressed far enough due to the state explosion.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a) GJK algorithm

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b) directed approximation

Figure 5: Impact of the separation algorithms on the
flowpipe in the circle benchmark with guard outside
of the circle. The flowpipe obtained from the initial
states (solid blue) with box directions (light green)
intersects with the guard (red). The pointwise sepa-
ration algorithm finds a separating direction (black)
for the flowpipe segment at a point in time (dashed
blue); its overapproximation (dark green) no longer
overlaps with the guard. Here, the separation crite-
rion with fixed direction is able to show separation
over the entire time horizon

By dynamically synthesizing template directions using the
pointwise flowpipe separation algorithm and directed ap-
proximation, the support function reachability is able to
show safety. A safe fixed point is reached within 25 iterations
(1.3 s) for N = 2 and 107 iterations (143 s) for N = 3. Each
convex separation step requires 4–6 directions for N = 2 and
9–21 directions for N = 3.

Applying the flowpipe separation algorithm, we were able
to avoid being stalled at a shallow search depth, which is an
all-too-common manifestation of the state explosion prob-
lem. The experiments shown in this section should be in-
terpreted with consideration for the prototype status of the
implementation. Numerous performance improvements are
possible, in particular with respect to the GJK algorithm,
which can be carried out using a simplical subset of the con-
vex hull to avoid scalability problems. Further experiments
are therefore required to evaluate the scalability and perfor-
mance that can be achieved in flowpipe separation and its
application to avoid spurious transitions.

7. ACKNOWLEDGMENTS
This work was partly supported by the German Research

Foundation (DFG) as part of the Transregional Collabora-
tive Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS, http://www.

avacs.org/), by the European Research Council (ERC) un-
der grant 267989 (QUAREM) and by the Austrian Science
Fund (FWF) under grants S11402-N23 (RiSE) and Z211-
N23 (Wittgenstein Award).

8. REFERENCES
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A.

Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science,
138(1):3–34, 1995.

[2] R. Alur, T. Dang, and F. Ivancic.
Counterexample-guided predicate abstraction of

Table 2: Results for the circle benchmark

Algo. Calls # d Runtime Res.

guard on the outside of the circle

CH, GJK, Fix. 1 15 0.019s SEP
CH, DA, Fix. 1 5 0.007s SEP
PW, GJK, Fix. 1 6 0.006s SEP
PW, DA, Fix. 1 6 0.010s SEP
CH, GJK, Dyn. 1 15 0.017s SEP
CH, DA, Dyn. 1 5 0.007s SEP
PW, GJK, Dyn. 2 7 0.014s SEP
PW, DA, Dyn. 2 11 0.023s SEP
CH, GJK, Both 1 15 0.017s SEP
CH, DA, Both 1 5 0.006s SEP
PW, GJK, Both 1 6 0.010s SEP
PW, DA, Both 1 6 0.013s SEP

guard on the inside of the circle

PW, GJK, Fix. 20 694 4.388s SEP
PW, DA, Fix. 21 133 0.250s SEP
PW, GJK, Dyn. 1 7 0.010s SEP
PW, DA, Dyn. 1 5 0.010s SEP
PW, GJK, Both 1 7 0.010s SEP
PW, DA, Both 1 5 0.010s SEP

CH: flowpipe separation using convexification. PW: pointwise flow-
pipe separation. GJK: adapted GJK algorithm. DA: directed approx-
imation algorithm. Fix.: fixed directions. Dyn.: dynamic directions.
Both: combination of fixed and dynamic. SEP: separation shown.

hybrid systems. Theoretical Computer Science,
354(2):250–271, 2006.

[3] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic
symbolic verification of embedded systems. IEEE
Trans. Software Engineering, 22(3):181–201, 1996.

[4] E. Asarin, T. Dang, O. Maler, and R. Testylier. Using
redundant constraints for refinement. In Automated
Technology for Verification and Analysis, pages 37–51.
Springer, 2010.

[5] P. S. Duggirala and A. Tiwari. Safety verification for
linear systems. In EMSOFT’13. IEEE, 2013.

[6] G. Frehse, S. Bogomolov, M. Greitschus, T. Strump,
and A. Podelski. Eliminating spurious transitions in
reachability with support functions. Technical Report
TR-2014-10, Verimag, October 2014.

[7] G. Frehse, R. Kateja, and C. Le Guernic. Flowpipe
approximation and clustering in space-time. In
HSCC’13, pages 203–212. ACM, 2013.

[8] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton,
R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. SpaceEx: Scalable verification of hybrid
systems. In CAV, pages 379–395, 2011.

[9] G. Frehse and R. Ray. Flowpipe-guard intersection for
reachability computations with support functions. In
IFAC ADHS, pages 94–101, 2012.

[10] C. Le Guernic and A. Girard. Reachability analysis of
hybrid systems using support functions. In
A. Bouajjani and O. Maler, editors, CAV, volume
5643 of LNCS, pages 540–554. Springer, 2009.

[11] A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev.
Interactive Decision Maps, volume 89 of Applied
Optimization. Kluwer, 2004.

[12] I. M. Mitchell. Comparing forward and backward
reachability as tools for safety analysis. In HSCC’07,
pages 428–443, 2007.

[13] S. Sankaranarayanan, T. Dang, and F. Ivančić.
Symbolic model checking of hybrid systems using
template polyhedra. In TACAS’08, pages 188–202.
Springer, 2008.

[14] G. van den Bergen. Collision detection in interactive
3D computer animation. PhD thesis, Eindhoven
University of Technology, 1999.

http://www.avacs.org/
http://www.avacs.org/

	Introduction
	Representing Sets with Approximate Support Functions
	Approximate Support Functions

	Reachability with Support Functions
	Hybrid Automata
	Flowpipe Approximation
	Eliminating Spurious Transitions

	Separating Convex Sets Using Support Functions
	Separation using Directed Approximation
	Adapted GJK Algorithm

	Timed Flowpipe Separation
	Separation using Convexification
	Separation Point-Wise over Time
	Separating with Fixed Direction
	Separating with Dynamic Direction
	Pointwise Separation Algorithm

	Experimental Results
	Acknowledgments
	References

