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Abstract. Reachability analysis techniques aim to compute which states
a dynamical system can enter. The analysis of systems described by
nonlinear differential equations is known to be particularly challenging.
Hybridization methods tackle this problem by abstracting nonlinear dy-
namics with piecewise linear dynamics around the reachable states, with
additional inputs to ensure overapproximation. This reduces the analysis
of a system with nonlinear dynamics to the one with piecewise affine dy-
namics, which have powerful analysis methods. In this paper, we present
improvements to the hybridization approach based on a dynamics scal-
ing model transformation. The transformation aims to reduce the sizes of
the linearization domains, and therefore reduces overapproximation er-
ror. We showcase the efficiency of our approach on a number of nonlinear
benchmark instances, and compare our approach with Flow*.

1 Introduction

A hybrid automaton [26] is a widely used model for dynamical systems that ex-
hibit complex mixed discrete-continuous behavior. Reachability analysis [30, 22,
12] computes an envelope on the set of the states the hybrid automaton can visit
within a given time frame. While efficient approaches and tools exist for hybrid
automata with affine dynamics [32, 24, 3, 23, 11, 10, 13], reachability analysis of
nonlinear systems remains a challenging problem. The current approaches to
analyze nonlinear systems can be roughly categorized as follows:

– Hybridization based approaches [26, 5, 25, 6, 4, 7, 27, 1, 9] reduce the analysis
of nonlinear systems to the analysis of affine systems with uncertain inputs
and thus leverage the power of reachability algorithms for simpler classes of
dynamics.

– Taylor model based approaches [15, 16] approximate nonlinear dynamics us-
ing a Taylor expansion, i.e. a combination of polynomials and an interval
remainder. The computation of Taylor models is done by iteratively apply-
ing Picard operator.
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– Constraint solving based approaches [29, 21] encode the reachability problem
as a satisfiability modulo theory (SMT) problem. Note that such approaches
normally do not provide an explicit representation of the reachable set.

– Simulation based approaches compute the reachable set by simulating a hy-
brid automaton multiple times and then enclosing these simulations into
reachability tubes. For example, the tool C2E2 [20] uses annotations to com-
putes reachability tubes. Similarly, the tool Breach [19] employs sensitivity
analysis for the same purpose.

In the rest of the paper, we focus on hybridization based approaches for purely
continuous nonlinear dynamical systems. We note that the existing hybridization
approaches can be mainly classified into static and dynamic approaches. Static
approaches [26, 5, 7, 27, 9] partition the continuous state space and abstract non-
linear dynamics with its linear approximation in each of the partitions. The
resulting model is then forwarded for further analysis to a reachability analysis
tool which supports affine dynamics. Such approaches suffer from the following
two limitations. First, as the partition and thus all the abstraction domains are
fixed prior to the reachability analysis, the analysis cannot make use of any in-
formation about the system behavior. Therefore, the partition strategy can be
ineffective and inaccurate. Second, state space partitioning usually leads to an
exponential number of discrete modes in the resulting hybrid automaton, which
might make the reachability analysis computationally infeasible for large dynam-
ical systems. In contrast, in dynamic approaches [25, 6, 4, 1], the construction of
abstraction domains is performed on-the-fly and namely is interleaved with the
reachability analysis. In particular, a dynamic approach ensures that, for each
time moment, the abstraction domain encloses the currently-tracked set of states,
i.e. the set of states the system is currently at. As a larger domain normally re-
sults in a larger linearization error, the effectiveness of dynamic hybridization
approaches crucially depends on the choice of the abstraction domains.

Due to system nonlinearity, individual system states can evolve in quite differ-
ent ways. As a result, the currently-tracked set of states, can stretch in course of
the analysis. Thus, the abstraction domain can quickly grow as well, which might
lead to the drastic increase of the noise to be added to ensure conservativeness
of the linearized dynamics. In order to mitigate this issue, in our approach, we
combine a hybridization scheme with a model transformation technique named
dynamics scaling, which works by manipulating the dynamics of the original sys-
tem and aggregating reachable states over a time segment. We have implemented
the proposed techniques and benchmarked them against Flow* [15], a state-of-
art reachability analysis tool for nonlinear hybrid automata, on a number of
challenging benchmarks. We observe that on the majority of the benchmarks
our techniques show superior precision and runtime (of 1-2 orders of magni-
tude). As a consequence, our tool succeeds in verifying more safety properties
within a given time limit.

The main contributions of the paper are as follows:

1. We present a novel dynamic hybridization approach to perform reachability
analysis of nonlinear continuous dynamical systems, which relies on support-
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function set representation. As part of our approach, we employ an enhanced
error model for linear time-invariant systems which uses the input set de-
composition.

2. We embed into our workflow a dynamic scaling technique, which helps to
flatten the reachable sets, and in this way leads to reduction of the hybridiza-
tion errors. We propose a scaling function that is particularly suitable in the
hybridization context. In addition, we automate the process of dynamics
scaling using a heuristic.

3. We implement the proposed techniques and evaluate their effectiveness in
comparison to Flow* on a number of challenging benchmarks with 2-30 state
variables.

The rest of the paper is organized as follows. Section 2 presents the necessary
mathematical background to introduce our approach. Section 3 describes the
hybridization reachability algorithm and the improved error model based on
support functions. We present the enhancement of hybridization using dynamics
scaling transformation in Section 4. In Section 5, we report the evaluation results.
We conclude the paper in Section 6.

2 Preliminaries

In order to describe our method, we first review hybrid automata (Section 2.1)
and reachability analysis of affine systems using support functions (Section 2.2).

2.1 Hybrid Automaton

Definition 1 (Hybrid automaton). A hybrid automaton H is defined as a
tuple, H = (M,X , Inv , Init ,Flow ,Trans), where M = {m1, ...,mk} is a finite
set of modes; X is a finite set of n-dimensional real-valued variables; Inv is a
mapping M → 2R

n

, and Inv(mi) defines the invariant condition for the mode
mi ∈M; Init ⊆M×Rn defines the initial condition for variables and the initial
mode; Flow is a mapping of the locations to differential equations in the form
of ẋ = f(x), which defines how variables within a location evolve; Trans is a
finite set of discrete transitions t = (m, g, reset,m′) that may change the mode
of H from m to m′ and update the variables according to reset when the guard
condition g is satisfied. A state of H is a tuple s ∈M× Rn.

The behaviors of a hybrid automaton are formally described as runs, which are
alternating sequences of time elapse, during which X evolves according to Flow ,
and discrete transitions Trans, which updates X on reset. A state s is reachable
if there exists a run that starts from s0 ∈ Init and ends at s.

2.2 Reachability Analysis Using Support Functions

We consider bounded-time reachability analysis problem, which aims at comput-
ing an over-approximation of the set of reachable states upon time T originat-
ing from a set of initial states X0, denoted as R[0,T ](X0). Efficient reachability
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analysis algorithms using support functions [30, 32, 22] were proposed for hybrid
systems with Flow of the affine form ẋ = Ax(t) + u(t), u(t) ∈ U , where U is the
uncertain input to the system. These algorithms establish the basis of our work
on nonlinear systems.

Support functions. The support function [14] of a compact continuous set
S ⊂ Rn given a direction vector ` ∈ Rn is defined as

ρ(`,S) = max
x∈S

` · x

and a set S is uniquely defined by its support functions on all the directions:
S =

⋂
`∈Rn{x | `·x ≤ ρ(`,S)}. In the case where S is defined as the intersection of

hyperplanes, its support function can be computed by calling linear programmes
(LP). Support functions enable efficient implementation of the majority of set
operations used in reachability analysis:

– linear map: For a linear map A ∈ Rn × Rn, ρ(`, AS) = ρ(AT `,S)

– Minkowski sum: For sets S, S ′, denote their Minkowski sum as S ⊕S ′, then
ρ(`,S ⊕ S ′) = ρ(`,S) + ρ(`,S ′)

– convex hull : For sets S, S ′, denote their convex hull as CH(S,S ′), then
ρ(`,CH(S,S ′)) = max(ρ(`,S), ρ(`,S ′))

Checking emptiness of the intersection between a convex set with a halfspace
using support functions is straightforward [31]. Given a set S and a halfspace
G = {x ∈ Rn | a · x ≤ d}, where a ∈ Rn and d ∈ R, S ∩ G 6= ∅ if and only if
d ≥ −ρ(−a, S).

Affine reachability algorithms The reachability algorithm for affine dynam-
ics adopts the time discretization scheme with a fixed time step. Given a time
step δ, the algorithm overapproximates the reachable states with the union of
convex sets Ω0, . . . , ΩN−1, called a flowpipe, where dN = T/δe. The approxima-
tion relies on the error model operating on X0, U and δ, which mainly constitutes
two operators Ψ[0,δ](·) and Ψδ(·):

- Ψ[0,δ](·) overapproximates the reachable states originating from X0 over the
time interval [0, δ], i.e. R[0,δ](X0) ⊆ Ψ[0,δ](X0,U),

- Ψδ(·) overapproximates the disturbance of the system due to the uncertain
input, i.e. R[δ,δ]({0}) ⊆ Ψδ(U).

Each convex set of the flowpipe is computed as follows:

Ω0 = Ψ[0,δ](X0,U) (1)

Ωi+1 = eAδΩi ⊕ Ψδ(U) (2)

The instantiation of Ψ[0,δ](·) and Ψδ(·) differs among different error models.
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3 Hybridization with Support Functions

In this section, we describe the hybridization process, and improve one of the
essential steps that causes overapproximation error during hybridization.

A nonlinear continuous system can be modeled as a single-mode hybrid au-
tomaton with nonlinear dynamics:

ẋ = f(x), x ∈ X (3)

where f(·) is a locally Lipschitz continuous vector function. For a single-mode
hybrid automaton, we mainly refer to its continuous component of its state.
Given an initial set of states X0 defined by a hyperbox, i.e. Cartesian product of
intervals, and a time horizon T , we aim at computing the set of reachable states
of f(·) originating from X0 over time interval [0, T ].

3.1 Overview of Hybridization Scheme

To compute an overapproximation of the time-bounded set of reachable states of
a nonlinear system in Eq. 3, the hybridization approach first overapproximates
the nonlinear dynamics with affine dynamics, and then performs reachability
analysis on the resultant affine system. The overapproximation is performed
multiple times, each time restricted to a portion of the state space, which in our
case is a hyperbox. The process uses two concepts: (i) abstraction domain and
(ii) linearization function.

Definition 2 (Abstraction domains and linearization functions). An ab-
straction domain D ⊂ Rn is a hyperbox enclosing the reachable sets. We denote
the center of D as c. Given an abstraction domain D and nonlinear dynamics
f(·), a linearization function L(·) applies Jacobian linearization on f(·) with an
additive input set:

L(f(·)) =

{
ẋ(t) = Ax(t) + u(t)

u(t) ∈ U
(4)

where A is the evaluation of Jacobian matrix at the domain center c, i.e. Jf (c).
U is the set of conservative inputs such that ∀x(t) ∈ D, f(x(t))−Ax(t) ∈ U .

One can show that L(f(·)) simulates f(·) in D and therefore proves the
soundness of the hybridization approach.

In addition to Definition 2, our algorithm uses two procedures next discrete

and next dense. The procedure next discrete takes a sequence of linearized
dynamics and computes an overapproximation of R[t,t](X0), i.e. the set of reach-
able states at t time instance. The procedure next dense takes a sequence of
linearized dynamics and a reachable set Xi at discrete time t and computes an
overapproximation of R[0,δ](Xi), i.e. the set of reachable states over the time
interval [t, t+ δ]. The details of these procedures are described in Section 3.2.

The general hybridization algorithm is shown in Algorithm 1. At each step,
we first compute a minimal enclosing box of the reachable sets (line 11) and en-
large it by pushing the boundaries outwards for µ distance (line 12). We then take



6 D. Li et al.

the enlarged enclosing box as the abstraction domain D and compute linearized
dynamics within the domain (line 13). After we have the linearized dynamics,
we attempt to compute the dense-time reachable set at step i + 1 (line 15).
Importantly, we need to ensure that the abstraction domain always contains
the reachable sets to maintain the conservativeness (line 16). If Ω′ ⊆ D holds,
we compute an overapproximation of R[(i+1)δ,(i+1)δ](X0), which is required by
next dense for further computations (line 18). At the end of the step, we re-
set µ and advance time (line 19, 20). In case the containment check fails, we
increase µ (line 22) and compute a new abstraction domain by creating a box
containing both Ωi and Ω′ (line 11) and redo the computation for Ω′. Note
that for a readability reason we have omitted checking whether Ω0 stays within
D in Algorithm 1, although we have implemented this containment checking
practically. Correctness of the algorithm follows from the following two obser-
vations: (i) R[iδ,iδ](X0) ⊆ next discrete(X0, Θ), where Θ is the sequence of
〈Aj ,Uj〉, 0 ≤ j < i and (ii) R[iδ,(i+1)δ](X0) ⊆ next dense(Xi, Θ) = Ωi. There-

fore, R[0,T ](X0) = ∪N−1i=0 R[i,(i+1)δ](X0) ⊆ ∪N−1i=0 Ωi.
Algorithm 1 differs from [17, 35] mainly in two aspects. Firstly, we construct a

new abstraction domain at each time step. In principle, it might be beneficial to
avoid doing so as long as the reachable set does not leave the current domain, in
order to reduce the runtime cost in computing new linearized dynamics. However,
since the domain is constructed by enclosing the reachable sets and enlarged by
a small amount, the domain is rarely large enough for multiple steps in practice.
Moreover, constructing domains tightly confining reachable sets helps to reduce
the linearization errors and consequently improves the precision. Secondly, when
there happens a switch in the linearized dynamics, existing approaches [17, 35]
take the set of reachable states over a time interval (Ωi in our notation) as the
new initial set for the sebsequent computation, which is, however, not neces-
sary since the switch always happens on a time instance. In contrary, at the
(i + 1)th step, instead of taking Ωi as the initial set of states, we compute Xi
which overapproximates the reachable set at the time instance iδ. Therefore, the
approximation error in the computation of Ωi does not propagate. Additionally,
as we will see later in Section 3.2, because support functions provide an exact
representations for Xi, we do not introduce wrapping effects when switching the
abstraction domain.

3.2 Support Functions Computations

Since the hybridization approach uses affine reachability operators, the approxi-
mation quality is dependent on the accuracy of the error model. In this section,
we present the error model we use for affine reachability analysis and describe
the extension to the hybridization context through a recurrent formulation.

Improved Affine Reachability Error Model We use the same error model
to compute the dense-time reachable sets (next dense) as [32] and present an im-
proved error model over [22] to compute the discrete-time reachable (next discrete)
sets by better approximating the input sets.
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Algorithm 1: Hybridization Reachability Algorithm

Input: Initial state: X0, dynamics: f(·), total steps: N , time step: δ
Output: Sequence of reachable sets: {Ω0, . . . , ΩN−1}

1 i ← 0;
2 µ0 ← 10−9;
3 µ← µ0;
4 D ← enclosing box({X0});
5 〈A0, U0〉 ← L(f(·), D);
6 Θ ← List(〈A0, U0〉);
7 Ω0 ← next dense(X0, Θ);
8 Ω′ ← Ω0;
9 X1 ← next discrete(X0, Θ);

10 while i < N do
11 D ← enclosing box({Ωi, Ω

′});
12 D ← bloat(D, µ);
13 〈Ai, Ui〉 ← L(f(·), D);
14 Θ.append(〈Ai, Ui〉);
15 Ω′ ← next dense(Xi+1, Θ);
16 if Ω′ ⊆ D then
17 Ωi+1 ← Ω′;
18 Xi+1 ← next discrete(X0, Θ);
19 i← i+ 1;
20 µ← µ0;

21 else
22 µ← 2µ;
23 Θ.remove(〈Ai, Ui〉);

Lemma 1. (adapted from [32]) Assuming Xi overapproximates the reachable
set at time iδ, A is the a linear map of the linearized dynamics during the time
interval [iδ, (i+ 1)δ], let Ωi be the convex set defined by:

Ωi = CH(Xi, eAδXi ⊕ δU ⊕ αδB) (5)

where αδ = (e‖A‖δ − 1 − δ‖A‖)(RXi + RU
‖A‖ ), B denotes the unit ball for the

considered norm, RXi = maxx∈Xi ‖x‖ and RU = maxu∈U ‖u‖. Then

R[iδ,(i+1)δ](Xi) ⊆ Ωi (6)

We refer readers to [32] for the proof. Lemma 1 can be roughly understood as
follows. eAδXi⊕δU is an overapproximation of the reachable set at time (i+1)δ;
the bloating operation and the convex hull operation give the overapproximation
of the reachable set over the time interval [iδ, (i + 1)δ]. The bloating factor αδ
is computed such as to ensure the overapproximation.

The support function of Ωi on ` is computed as follows:

ρ(`, Ωi) = max(ρ(`, Xi), ρ((eAδ)T `, Xi) + δρ(`, U) + αδρ(`, B) (7)

Before we present the improved error model on the computation of discrete-
time reachable sets, we introduce the following notations: �(S), which denotes
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the symmetric interval hull of a set S ⊂ Rn, is defined as [−|x1|; |x1|] × . . . ×
[−|xn|; |xn|] where ∀i : 1 ≤ i ≤ n, |xi| = max{|xi| | x ∈ S}. |·| is the element-wise
absolute operation over a matrix or vector. The model relies on the following
matrices:

Φ1(A, δ) =

∞∑
i=0

δi+1

(i+ 1)!
Ai, Φ2(A, δ) =

∞∑
i=0

δi+2

(i+ 2)!
Ai (8)

If A is invertible, Φ1 and Φ2 can be computed as Φ1(A, δ) = A−1(eAδ − I),
Φ2(A, δ) = A−2(eAδ− I−Aδ). Otherwise they can be computed as sub-matrices
of a block matrix exponential [22].

The rationale behind the improvement is as follows. Since the error model
on the input relies on �(AU), the symmetric interval hull operation can be too
coarse if the input set is not centered around the origin. From this observation,
we decompose U into {uc}⊕W, where uc is the geometric center of U and W is
a set that centers around the origin. This way, we reduce the overapproximation
introduced during the symmetric hull operation. The improved error model is
formalised by the following lemma:

Lemma 2. Assuming A is the linear map of the linearized dynamics during the
time interval [iδ, (i + 1)δ], Xi overapproximates the reachable set at time iδ, let
Xi+1 be the set defined by

Xi+1 = eAδXi ⊕ Ψδ(U) (9)

Ψδ(U) = δW ⊕ εW ⊕ Φ1(A, δ) · uc (10)

εW = �(Φ2(|A|, δ) � (AW)) (11)

Then R[(i+1)δ,(i+1)δ] ⊆ Xi+1.

Proof. See a technical report [34].
Lemma 2 provides a way to compute the discrete-time reachable set of the

next time instance given that of the current time instance and the linearized
dynamics. As opposed to [22], our model improves the accuracy of the approxi-
mation by better handling the uncertainty in the input set. The support function
of Xi+1 on ` is computed as follows:

ρ(`, Xi+1) = ρ(`, (eAδ)TXi) + ρ(`, Ψδ(U)) (12)

ρ(`, Ψδ(U)) = δρ(`, W) + ρ(`, εW) + ` · Φ1(A, δ) · uc (13)

Support Function Computations for Nonlinear Systems As described
in Procedure 1, the reachability analysis of a nonlinear system is reduced to
analyzing a sequence of linearized systems with uncertain inputs. Since we create
a hybridization domain for each step, after k steps we have k pairs of 〈Ai,Ui〉,
using which we can extend the error model for the discrete reachable sets to the
nonlinear systems.
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Lemma 3. Given the initial states X0 and a sequence of linearized dynamics
Θ = {〈Ak, Uk〉} (0 ≤ k < i), let Xi+1 be the set defined by:

Xi+1 =
( i∏
r=0

eAi−rδ
)
X0 ⊕

i⊕
r=1

( i−r∏
m=0

eAi−mδ
)
Ψδ(Ur−1)⊕ Ψδ(Ui) (14)

Then it follows that R[(i+1)δ,(i+1)δ] ⊆ Xi+1.

Proof. See a technical report [34].
The support function of Xi+1 on the direction ` is as follows:

ρ(`, Xi+1) = ρ
( i∏
r=0

(eArδ)T `, X0

)
+

i∑
r=1

ρ(

i∏
m=r

(eAmδ)T `, Ψδ(Ur−1)) + ρ(`, Ψδ(Ui)) (15)

The support function of Ψδ(Up−1) and Ψδ(Ui) can be computed according to
Eq. 13. In Eq. 15, the number of linear programs to solve grows linearly in the
number of steps i. As a result, the total number of linear programs to solve is
quadratic in relation to the number of steps dT/δe, which can be several thou-
sands in typical cases. Although the result from the computation perspective is
polynomial, the number of calls needed to an LP solver is a source of signifi-
cant slowdown. Nevertheless, by restricting X0 to be the Cartesian product of
intervals of an n−dimensional space, all the convex sets involved in Eq. 15 are
hyperboxes. And the following well-known property of hyperboxes allows us to
compute ρ(`, Xi+1) without calling an LP solver.

Proposition 1 (Support function of a hyperbox). Given a hyperbox B =
[a1, b1]× . . .× [an, bn], the support function of B on the direction ` = (`1, . . . , `n)
is given by:

ρ(`,B) =

n∑
i=1

`i · hi, where hi =

{
ai, if li ≤ 0

bi, otherwise
(16)

Proposition 1 enables the computation of support functions for a set of hy-
perboxes in a batch by properly vectorizing the matrix multiplication operations,
which leads to some performance gains in practice.

4 Dynamics Scaling for Hybridization

The main source of overapproximation error in hybridization methods comes
from the overapproximation of the nonlinear dynamics within the abstraction
domains. Instead of hyperboxes, some methods have used simplices [18] or other
polyhedra [3] as abstraction domains. However, since individual trajectories may
evolve quite differently and end up with reaching different states given a specific
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time instance, domains may need to stretch out irrespective of the domain shape,
in order to contain all the reachable states within one step. In this section,
we propose a dynamics scaling technique applied to the hybridization context,
which helps to reduce the error in the reachable sets by properly manipulating
the dynamics of the system. The dynamics scaling technique was first proposed
in [8] to reduce the error during the conversion of guard conditions for affine
systems. The main idea behind dynamics scaling is to create an additional mode
in the automaton that multiplies the original dynamics by a scaling function.
It is also shown in [8] that if the scaling function always outputs a nonnegative
number for any states considered, the set of reachable states computed for time-
bounded reachability does not change.

We employ the dynamics scaling technique for nonlinear system analysis and
extend it in two aspects. Firstly, we propose a new scaling function so that the
trajectories lagged behind is sped up while others in front are slowed down,
therefore, the reachable set is flattened (Fig. 1). As a consequence, the size of
abstraction domains is reduced, which eventually leads to less approximation er-
rors and better reachability precision. Secondly, we propose a heuristic approach
to select the dwelling time in the scaling mode. To our best knowledge, this is the
first attempt to exploit and automate dynamics scaling for reachability analysis
of nonlinear systems.

Dynamics Scaling Function Given nonlinear dynamics f(·) and the currently
tracked set of states Ω, the scaled dynamics h(·) is detailed as below:

h(x) = m · d(x) · f(x) (17)

d(x) =
1

‖a‖
(−ax+ b) (18)

h(·) scales the original nonlinear dynamics by the scaled distance function d(·),
which measures the signed distance from the point x to the hyperplane defined
by ax ≥ b. Note that d(·) is nonnegative for any x that satisfies ax ≤ b. The
signed distance is scaled by a constant multiplier m, as we will explain later. We
call m · d(x) the dynamics scaling function.

Now we describe how we choose the hyperplane ax ≥ b. At each scaling
step, we first evaluate the gradient of f(·) at the center of Ω, denoted as l′ =
df(x)
dx |x=cΩ , cΩ is the geometric center of Ω. Then we use the complementary

halfspace of the supporting hyperplane ofΩ in the direction l′, i.e. l′·x ≥ ρ(l′, Ω),
as the hyperplane. By scaling dynamics using a signed distance function, the
speed of trajectories that are far from the hyperplane is increased while the speed
of those near the hyperplane is decreased. As a result, the size of abstraction
domains is reduced which in turn leads to smaller linearization errors.

Different from affine systems, the linear map A in our approach is the eval-
uation of the Jacobian matrix of f(·) at the center of the abstraction domain.
The addition of the dynamics scaling function modifies the system dynamics
and consequently its Jacobian matrix. Since the error model relies on ‖A‖, such
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linearization brings two possible downsides: i) as e‖A‖δ grows exponentially in
‖A‖, a linear map A of a large norm may result in a prohibitively large αδ and
leads the flowpipe to diverge; ii) a linear map A of a small norm slows down the
progression of the trajectories and takes more steps to achieve the scaling effect.

Therefore, we propose to add a multiplier m =
‖Af‖
‖Ah‖ which equates the norm

of the scaled and unscaled linearized dynamics, where Af is the linear map of
linearized dynamics of f(·) and Ah is the linear map of the linearized dynamics
of d(·) · f(·). We observed in practice that i) the addition of m helps maintain-
ing the magnitude of bloating factors in a reasonable order and ii) a moderate
amount of steps in the scaling mode leads to a decent scaling effect.

Heuristics for Dynamics Scaling We apply dynamics scaling periodically
during the reachability analysis. To this end, we introduce a parameter scaling
period p ∈ (0, 1) to indicate that we perform dynamics scaling after each dp · T e
time segment. A smaller period enables dynamics scaling more often and provides
a stronger scaling effect. On the other hand, because dynamics scaling introduces
more nonlinearity by adding a polynomial term, the time cost of computing the
linearization errors could arise. Therefore, p balances the trade-off between a
stronger scaling effect and additional nonlinearity and computation runtime.

In order to decide when to enter into a scaling mode and to revert to the
original dynamics, we introduce a heuristic to measure the effect of dynamics
scaling. The heuristic relies on the following operation: �(S) denotes the interval
hull of a set S ⊂ Rn, defined as [|x1|; |x1|]× . . .× [|xn|; |xn|]. For a reachable set
Ω, we approximate the volume of S by the volume of its interval hull: σ(Ω) ∼
σ(�(Ω)) =

∏n
i=1(|xi| − |xi|). When dp · T e time segments passes, we enable

dynamics scaling and check whether the volume of the Ω would decrease. The
system then alters to the scaling mode if the check succeeds, otherwise, it remains
in the original mode for the next dp · T e segments. Similarly, when dynamics
scaling does not help to decrease the volume of the reachable set, the system
exits the scaling mode and reverts to the normal, i.e. unscaled, dynamics.

5 Evaluation

We implemented our techniques in a prototypical tool in Python. We employ
NumPy [39] to perform matrix operations. Linearization errors are computed
using Kodiak library [38], which provides rigorous bounds for nonlinear global
optimization problems using interval arithmetic and Bernstein enclosure. All
the experiments were run on a laptop running Ubuntu 16.04 equipped with Intel
i7-7600U CPU (2.80GHz, 4 cores) and 16 GB RAM.

5.1 Benchmark Evaluation

We evaluate our tool on a number of nonlinear benchmark instances featuring
from 2 to 30 dimensions with the aim to assess efficiency and precision of our ap-
proach. We compare our tool with the recent version of Flow* that participated
in the ARCH competition [2].
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Fig. 1: Effect of dynamics scaling. For the illustration purpose, we apply dy-
namics scaling towards a hyperplane at y = 1.35. In the normal mode (left),
the flowpipe passes the hyperplane while the reachable set stretches over y axis.
In the dynamics scaling mode (right), the flowpipe contracts to the hyperplane
(red). As a result, the size of the abstraction domain reduces.

Experimental setting. Our goal is to verify safety properties of considered
benchmark instances. For each benchmark, we first considered a weak safety
condition, for which the system can be proven safe easily upon finishing the
reachability analysis over the time horizon. In case the condition is too weak
to show the difference in precision, we either strengthened the safety condition
or increased the time horizon until one or both tools failed to verify the safety.
We tuned the parameters of both tools and reported the configurations with
the minimal runtime on success, otherwise, the best possible configuration with
which the flowpipe still contract. The timeout is set to 900 seconds.

Benchmarks We use the following benchmarks in our evaluation:
Brusselator. The Brusselator is a theoretical model for a class of autocatalytic

reaction [36]. The dynamics are given by ẋ = 1 + x2 · y − 0.5x, ẏ = 1.5x− x2y.
We use the same initial set as [15], i.e. (x, y) ∈ [0.8, 1]× [0, 0.2].

Lotka-Volterra. The Lotka-Volterra describes the dynamics of population
changes of two species that interact in a predator-prey relation. The dynam-
ics are given by ẋ = x(1.5− y), and ẏ = −y(3− x). We use the same initial set
as [15], i.e. (x, y) ∈ [4.8, 5.2]× [1.8, 2.2].

Biological models. Biology I, Biology II are benchmarks presented in [15]
modeling biological systems from [28]. The dynamics of Biology I (7 dimensions)
are given by ẋ0 = −0.4x0 + 5x2x3, ẋ1 = 0.4x0 − x1, ẋ2 = x1 − 5x2x3, ẋ3 =
5x4x5−5x2x3, ẋ4 = −5x4x5 + 5x2x3, ẋ5 = 0.5x6−5x4x5, ẋ6 = −0.5x6 + 5x4x5.
We consider the initial set4 xi ∈ [0.99, 1.01]. The dynamics of Biology II (9
dimensions) are given by ẋ0 = 3x2 − x0x5, x1 = x3 − x1x5, ẋ2 = x0x5 − 3x2,
ẋ3 = x1x5−x3, ẋ4 = 3x2 +5x0−x4, ẋ5 = 5x4 +3x2 +x3−x5(x0 +x1 +2x7 +1),
ẋ6 = 5x3 + x1 − 0.5x6, ẋ7 = 5x6 − 2x5x7 + x8 − 0.2x7, ẋ8 = 2x5x7 − x8. We
consider the same initial set as [15], i.e. xi ∈ [0.99, 1.01].

4 https://ths.rwth-aachen.de/research/projects/hypro/biological-model-i/
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(Coupled) Van der Pol Oscillator. The model of a two-dimensional Van der
Pol oscillator arises in the study of circuits containing vacuum tubes and is known
to exhibit a limit cycle. The dynamics are given by ẋ = y, ẏ = (1− x2) · y − x.
We scaled up the benchmark up by coupling more oscillators in the way similar
to the two-coupled Van der Pol oscillators (4 dimensions) [37]. The dynamics
of N -coupled Van der Pol Oscillators (N ≥ 2) are given as ẋi = yi, ẏ0 =
(1 − x20)y0 − x0 + (x1 − x0), ẏi = (1 − x2i )yi − xi + (xi−1 − xi) + (xi+1 − xi)
(1 < i < N − 1), ẏN−1 = (1 − x2N−1)yN−1 − xN−1 + (xN−2 − xN−1). We use
the same initial set as [15] and extends it to the high-dimensional instances, i.e.
xi, yi ∈ [1.25, 1.55]× [2.25, 2.35].

(Coupled) Oscillator. We considered the model used in [16] to measure the
scalability of the reachability analysis approaches. The model was adapted from
[33] that describes the dynamics of synchronization among genetic oscillators.
The model consists of N oscillators, each of which is described by five continuous
variables. The dynamics are given by ẋi = 0.1ui − 3xi + 10

N

∑N−1
j=0 vj , ẏi =

10xi − 2.2yi, żi = 10yi − 1.5zi, v̇i = 2xi − 20vi, u̇i = −5u2i z
4
i (10yi − 1.5zi).

We use the same initial set as [16], i.e. xi ∈ [−0.003 + 0.002i,−0.001 + 0.002i],
yi ∈ [0.197 + 0.002i, 0.199 + 0.002i], zi ∈ [0.997 + 0.002i, 0.999 + 0.002i], vi ∈
[−0.003 + 0.002i,−0.001 + 0.002i], ui ∈ [0.497 + 0.002i, 0.499 + 0.002i].

Tuning of the tools We tuned parameters of both tools to minimize the run-
time. For our tool, we fixed the dynamics scaling period as 0.1 for all benchmarks
except for (coupled) oscillators. We disabled dynamics scaling on (coupled) os-
cillators due to two observations: i) without dynamics scaling, the precision is
sufficient to verify the safety; ii) the benefit of applying dynamics scaling did
not always payoff the loss in the runtime on this particular benchmark. For each
benchmark, we searched for a minimal time step until i) it is sufficiently small
to verify the safety, then we increased it until the safety is violated and reported
the largest safe time step; ii) it is so small that the tool timed out, we then
reported TO. We used hypy [9] to script a grid-search strategy to identify the
optimal tuning parameters for Flow* . Hypy is a Python library that is able to
automatically run Flow* with a given configuration and parse the result. We
first specified a minimal time step, an increment for time step and a subset of
Taylor model orders such that Flow* could complete the analysis. Our script
then exhaustively tried various combinations of Taylor model orders and time
step. The time step was increased until safety is violated. We reported the set-
ting that proved the safety with a minimal runtime if one existed. The cut-off
threshold in Flow* was fixed as 10−9 in all the experiments.

Results We show results in Table 1, which leads to the following observations:
i) On Brusselator, Biology I, II, (coupled) Van der Pol oscillators benchmarks,
our approach was superior in both runtime and precision. In particular, on (cou-
pled) Van der Pol oscillators benchmark, our approach was 10-20 times faster
than Flow* (2-coupled Vanderpol) and on high dimensional cases (3-coupled
Vanderpol, 4-coupled Vanderpol), Flow* cannot finish within the time limit.
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Table 1: Comparison results on benchmarks. Dim.: Dimension of benchmarks;
Horizon: time horizon. Safe: safety property; TM: Taylor model order; δ: time
step; t: runtime, TO: The tool/approach timed out after 900 seconds.

Benchmarks Dim. Horizon Safe
Flow* Ours

TM δ t δ t

Brusselator 2 10 y ≤ 2 6 0.04 6.49 0.02 5.35

Brusselator 2 25 y ≤ 2 9 0.001 TO 0.01 22.46

Lotka-Volterra 2 3 y ≤ 6 5 0.01 2.34 0.01 5.14

Lotka-Volterra 2 3 y ≤ 5.6 5 0.01 2.32 0.0001 TO

biology I 7 2 x3 ≥ 0.9 4 0.02 28.26 0.005 9.30

biology I 7 2 x3 ≥ 0.92 4 0.01 49.99 0.002 16.38

biology II 9 2 x6 ≥ 10 7 0.02 TO 0.001 236.79

Vanderpol 2 7 y ≤ 3 5 0.02 2.42 0.04 2.83

Vanderpol 2 7 y ≤ 2.7 12 0.001 TO 0.02 4.17

2-coupled Vanderpol 4 7 y0 ≤ 3 6 0.02 100.41 0.02 5.25

2-coupled Vanderpol 4 7 y0 ≤ 2.75 7 0.015 227.76 0.01 11.48

3-coupled Vanderpol 6 7 y0 ≤ 3 5 0.01 TO 0.005 72.31

4-coupled Vanderpol 8 7 y0 ≤ 3 5 0.025 TO 0.005 158.51

oscillator 5 3 y1 ≥ 0.08 4 0.02 4.17 0.005 5.99

oscillator 5 3 y1 ≥ 0.085 4 0.02 3.98 0.0015 31.86

2-coupled oscillator 10 3 y1 ≥ 0.08 4 0.02 32.26 0.005 12.30

2-coupled oscillator 10 3 y1 ≥ 0.085 4 0.02 31.63 0.0015 63.97

3-coupled oscillator 15 3 y1 ≥ 0.08 4 0.02 140.39 0.005 22.04

3-coupled oscillator 15 3 y1 ≥ 0.085 4 0.02 136.99 0.0015 146.91

4-coupled oscillator 20 3 y1 ≥ 0.08 4 0.015 291.88 0.005 32.46

4-coupled oscillator 20 3 y1 ≥ 0.085 4 0.005 TO 0.0015 284.61

5-coupled oscillator 25 3 y1 ≥ 0.08 4 0.01 603.98 0.005 50.03

5-coupled oscillator 25 3 y1 ≥ 0.085 4 0.005 TO 0.0015 398.5

6-coupled oscillator 30 3 y1 ≥ 0.08 4 0.025 TO 0.005 73.98

Further investigations showed that these benchmarks are also the ones where
the effect of dynamics scaling was significantly beneficial. The projections of the
flowpipe (red) and the numerical simulations (dark blue) of Brusselators (hori-
zon=25 seconds) and 2-coupled Van der Pol oscillators are shown in Fig. 2. We
showed the best result Flow* produced without exceeding the time limit. ii) On
(coupled) oscillators, our tool usually proved the weak safety property faster and
scaled better than Flow*. By using smaller time steps, our approach can prove
the strengthened safety properties using a runtime that is comparable (within 1
order) to Flow* on instances with 2 or 3 oscillators. Flow* again failed on high
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(a) Hybridization with dy-
namics scaling.

(b) Hybridization without
dynamics scaling.
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Fig. 2: Flowpipes using different approaches/tools on brusselator (above) and
2-coupled Van der Pol oscillators (below) benchmarks.

dimensional cases while our approach succeeded in a reasonable amount of time;
iii) Flow* showed better precision and speed on Lotka-Volterra model while our
approach failed to prove the strengthened property. A possible explanation is
that the imprecision due to nonlinearity introduced by applying the dynamics
scaling outweighs the benefits of the flattening.This raises the question of how
to best use dynamics scaling to improve the precision of flowpipe computation,
which we will investigate in the future.

6 Conclusion

In this paper, we have proposed a novel hybridization approach which employs
the dynamics scaling model transformation. In this way, we can reduce the size
of abstraction domains, which in turn leads to better analysis precision. Our
approach uses an enhanced error model to handle affine dynamics based on the
input set decomposition. We have shown the effectiveness and precision of our
approach by a comparative evaluation against the tool Flow* on a number of
challenging nonlinear system benchmarks which feature 2 to 30 state variables.
In the future, we plan to explore further strategies to guide dynamics scaling.
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