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Abstract: The problem of safety verification for a subclass of hybrid systems, namely for
impulsive systems with fixed moments of jumps is considered. Sufficient conditions are derived
for the safety of impulsive systems whose continuous dynamics may steer the state outside the
safe region. For this purpose auxiliary barrier certificates with nonlinear rates are introduced
and equipped with appropriate dwell-time conditions which restrict the upper bound for the
inter-jump interval in order to ensure the desired safety property. The proposed approach is
demonstrated by performing safety verification of linear and nonlinear impulsive systems.

Keywords: Safety analysis, Hybrid systems, Impulsive systems, Barrier certificates, Nonlinear
rate functions

1. INTRODUCTION

The study of safety property in the context of dynamical
systems dates back to the work of Nagumo (1942) who
provides necessary and sufficient conditions for the set in-
variance under the continuous flow. We refer the reader to
the papers (Blanchini, 1999; Ames et al., 2019; Henzinger,
1996) and references therein for a detailed literature
overview and historical origins of the safety verification
problem. A number of approaches to solve this problem
for hybrid dynamical systems have been proposed. These
include methods based on flow-pipe construction (Frehse
et al., 2011; Chen et al., 2012; Bogomolov et al., 2019, 2018;
Gurung et al., 2018), SMT techniques (Gao et al., 2013)
and theorem proving (Platzer and Quesel, 2008). In this
paper, we present a method to analyze safety of dynamical
systems using barrier certificates (Prajna and Jadbabaie,
2004; Prajna, 2006; Prajna and Rantzer, 2005; Prajna
et al., 2007; Kong et al., 2013; Dai et al., 2017). These are
auxiliary functions that characterize the dynamics of the
system with respect to the safe and unsafe sets. The con-
ditions ensuring safety of hybrid system derived in these
works may be described as follows: flow and jump maps
that govern the dynamics of the hybrid system should be
such that (a) the state of the system can not leave the safe
region while it evolves along the trajectories of differential
equations (flow); (b) discrete transitions transfer the state
from the safe region to the safe region. This situation can
be described as a ’good–good’ process where the flows and
jumps do not violate the safety property.
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The main idea of this paper is to transfer techniques used
in the stability analysis of hybrid systems to solve the
safety verification problem for a narrower class of hybrid
systems, namely, for impulsive differential equations with
fixed moments of jumps. Stability analysis of impulsive
systems can be performed under the assumptions that
the flows and jumps have a different impact on stability.
For example, continuous flows may contribute towards
stability and vice versa, discrete transitions play against
the stability property of the system. Then, the goal is
to design a system in such a way that the jumps occur
not too frequently. This would balance continuous dy-
namics and discontinuous dynamics and does not allow
for the impulsive jumps to destroy stability (see, e.g.,
Hespanha et al. (2008); Dashkovskiy and Mironchenko
(2013); Dashkovskiy and Feketa (2017); Feketa and Ba-
jcinca (2019b)).

The main goal of this note is to find analytic relations
between the set of initial states and the frequency of
discrete transitions ensuring safety property for a given
impulsive system with a ’bad’ continuous dynamics and a
’good’ discrete dynamics. The attributes ’bad’ and ’good’
correspond to the flows that may steer the state outside
the safe set and to the jumps that transfer the state to the
safe set, respectively. The paper proposes new sufficient
conditions for the safety of nonlinear impulsive systems in
terms of auxiliary scalar functions whose evolution along
the piece-wise continuous trajectories of the system can be
estimated with nonlinear rate functions.

The rest of the paper is organized as follows. In Section 2,
the problem of safety verification for impulsive systems is
formulated and motivating examples are provided. New
sufficient conditions for the safety and examples demon-
strating the usage of the main results are provided in
Section 3. In Section 4, a corollary of the main theorem
is derived that is based on the barrier certificates of the
exponential type, i.e., for the case of linear rate functions.



Finally, an example with nonlinear rates and a short dis-
cussion conclude the paper.

2. PROBLEM STATEMENT AND EXAMPLES

Consider impulsive system (Samoilenko and Perestyuk,
1987) with fixed moments of jumps

ẋ(t) = f(x(t)), t 6= ti
x(t) = g(x−(t)), t = ti, i ∈ N (1)

where t ∈ R, x(t) ∈ X ⊆ RN , N ∈ N, f : X → RN ,
g : X → X, 0 := t0 < t1 < . . . < ti < . . . with

θ1 ≤ ti − ti−1 ≤ θ2 (2)

for all i ∈ N and some positive θ2 > θ1 > 0. Assume
that the flow map f is such that the solutions to the first
equation in (1) are forward complete in X. The state x
of the impulsive system is assumed to be right-continuous
and to have left limits at all times. Denote by (·)− the
left-limit operator, i.e., x−(t) = lims↗t x(s).

Assume that

X = XSAFE ∪XUNSAFE, XSAFE ∩XUNSAFE = ∅
and the initial state

x0 ∈ X0 ⊆ XSAFE ⊆ X.
The problem of safety verification of the system (1) is
to prove that its solution cannot reach the unsafe set
XUNSAFE from the initial set X0.

Proposition 1. (adapted from Kong et al. (2013)). If there
exists a continuously differentiable function V : X → R
such that

V (x) ≤ 0 ∀x ∈ X0

V̇ (x) ≤ λV (x) ∀x ∈ X
V (g(x)) ≤ γV (x) ∀x ∈ XSAFE

V (x) > 0 ∀x ∈ XUNSAFE

for some λ ∈ R and some γ ∈ (0,∞), then the safety
property is satisfied by system (1).

Example 1 (Example of a safe system). Consider the
system

ẋ = −x, t 6= nθ, x =
x−

2
, t = nθ, (3)

where t ∈ R, x(t) ∈ R, n ∈ N, θ > 0. Let

X0 = [0,∞), XSAFE = [0,∞), XUNSAFE = (−∞, 0).

It is easy to see that system (3) satisfies the conditions of
the Proposition 1 with V (x) = −x and λ = −1, γ = 1

2 .
System (3) is safe for any θ > 0.

Next, an example of an impulsive system is considered that
does not satisfy Proposition 1.

Example 2 (Motivating example). Consider the system

ẋ = −1, t 6= nθ, x = 3x−, t = nθ, (4)

where t ∈ R, x(t) ∈ R, n ∈ N, θ > 0. Let

XSAFE = [0,∞), XUNSAFE = (−∞, 0).

Task : Find a tuple (X0, θ) such that system (4) is safe.

Empirical solution: in system (4), the flow map is ’bad’
since it steers the state of the system into the unsafe region,
and the jump map is ’good’ since it transfers the safe states
further from the unsafe region. Additional constraint on
the frequency of jumps should be imposed in order to
balance continuous dynamics and discontinuous dynamics
of the system.

3. SUFFICIENT CONDITIONS FOR SAFETY

In this section new sufficient conditions for the safety of
impulsive systems are provided.

Theorem 2. Let there exist a continuously differentiable
function V : X → R for system (1) such that

V (x) ≤ 0 ∀x ∈ XSAFE

V̇ (x) ≤ ϕ(V (x)) ∀x ∈ XSAFE

V (g(x)) ≤ ψ(V (x)) ∀x ∈ XSAFE

V (x) > 0 ∀x ∈ XUNSAFE

(5)

for some continuous non-increasing function ϕ : (−∞, 0]→
[0,∞), ϕ(s) = 0 ⇒ s = 0 1 , and continuous increasing
function ψ : (−∞, 0] → (−∞, 0]. If for some a < 0 and
b ≤ 0 the conditions

θ2 ≤
0∫
a

ds

ϕ(s)
(6)

and

θ2 ≤
b∫

ψ(b)

ds

ϕ(s)
(7)

hold true, then solutions to (1) cannot reach the unsafe
set XUNSAFE from the initial set

X0 = {x ∈ XSAFE : V (x) ≤ min {a, c}} , (8)

where constant c satisfies
b∫
c

ds
ϕ(s) ≥ θ2.

Remark 1. Constants a and b in Theorem 2 should be
chosen as large as possible in order to enlarge the set X0.

Proof. Consider any solution x = x(t) to (1) starting at
x0 ∈ XSAFE such that V (x0) = a. If such x0 ∈ XSAFE

with V (x0) = a does not exist then, following (8), the
set X0 ≡ ∅. Now, consider the case when there exists
an x0 ∈ XSAFE with V (x0) = a and prove that X0 is
non-empty under the conditions of Theorem 2. Denote by
v(t) := V (x(t)). Then, from (5) it follows that v̇(t) ≤
ϕ(v(t)) and

dv(t)

ϕ(v(t))
≤ dt

unless the point remains in the safe region and v(t) 6= 0.
Since the rate function ϕ may be positive in (−∞, 0], the
continuous flow may steer the point out of the safe region
XSAFE if the impulsive jump occurs too late. Integrate the
last inequality from 0 to some t∗:

t∗∫
0

dv(t)

ϕ(v(t))
≤ t∗.

Denoting v(t) = s on the left-hand side of the last
inequality one obtains

v(t∗)∫
v(0)

ds

ϕ(s)
≤ t∗ ⇒

v(t∗)∫
a

ds

ϕ(s)
≤ t∗

⇒
0∫
a

ds

ϕ(s)
+

v(t∗)∫
0

ds

ϕ(s)
≤ t∗

1 Implication ϕ(s) = 0 ⇒ s = 0 means that there exists no s < 0
such that ϕ(s) = 0. It is admissible that ϕ takes only positive values.



⇒
v(t∗)∫
0

ds

ϕ(s)
≤ t∗ −

0∫
a

ds

ϕ(s)
.

A combination of the last inequality with (6) leads to the
following estimate

v(t∗)∫
0

ds

ϕ(s)
≤ t∗ − θ2 ≤ 0 for t∗ ∈ [0, θ2]. (9)

This means that v(t) ≤ 0 for any t ∈ [0, θ2] assuming that
the point moves along the continuous flow of the systems
(1). This implies that the point remains in the safe region
XSAFE for all times t ∈ [0, t1].

Now, pick any solution to (1) starting at x0 ∈ XSAFE

such that V (x0) = c ≤ a < 0. If such x0 ∈ XSAFE

with V (x0) = c does not exist then, following (8), the
set X0 ≡ ∅. Next, consider the case when there exists
an x0 ∈ XSAFE with V (x0) = c and prove that under
dwell-time condition (7), the state remains within the safe
region after each impulsive jump and does not leave XSAFE

during flows. For this purpose it is sufficient to show that
ψ(v(θ2)) ≤ a.

From (5), one obtains
v(θ2)∫
v(0)

ds

ϕ(s)
≤ θ2 ⇒

v(θ2)∫
c

ds

ϕ(s)
≤ θ2

⇒
a∫
c

ds

ϕ(s)
+

ψ(v(θ2))∫
a

ds

ϕ(s)
+

v(θ2)∫
ψ(v(θ2))

ds

ϕ(s)
≤ θ2.

Then,
ψ(v(θ2))∫
a

ds

ϕ(s)
≤ θ2 −

a∫
c

ds

ϕ(s)
−

v(θ2)∫
ψ(v(θ2))

ds

ϕ(s)
.

From the last inequality, ψ(v(θ2)) ≤ a holds only if

θ2 ≤
v(θ2)∫

ψ(v(θ2))

ds

ϕ(s)
+

a∫
c

ds

ϕ(s)
. (10)

If v(θ2) ≤ b, due to the monotonicity properties of the rate
functions ϕ and ψ, the dwell-time condition (7) implies
(10). Hence, ψ(v(θ2)) ≤ a for such initial values that
b∫
c

ds
ϕ(s) ≥ θ2.

Combining two parts of the proof, any trajectory starting
at the initial value x0 ∈ XSAFE such that V (x0) ≤
min {a, c} remains within the safe region for all times
t ∈ [0,∞). This completes the proof. 2

Remark 3. From the proof it is clear that the theorem
remains true if the rate functions ϕ and ψ are defined
on the interval (−∞, b]. The choice of X0 in (8) prevents
the state to reach the region where V (x) > b.

Example 2 (revisited). Impulsive jumps in system (4)
are equidistant, i.e. θ1 = θ2 = θ. System (4) satisfies
conditions (5) with V (x) = −x, ϕ(s) = 1, and ψ(s) = 3s.
Next, conditions (6) and (7) are to be verified. From (6),
one obtains:
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Fig. 1. Top figure: plots of the solutions to (4) with θ = 1

for two different initial values x0 = 1.4 and x0 = 1.6;
XSAFE – green, XUNSAFE – red, X0 – solid black.
Safety property is satisfied for initial values x0 ≥ 3

2 .
Bottom figure: the set X0 is in solid black for a given
θ2 = 1. The domain of admissible pairs (θ2, x0) is
filled with green.

0∫
a

ds

ϕ(s)
=

0∫
a

ds = −a ≥ θ2 ⇒ a ≤ −θ2.

Finally, from (7):

b∫
ψ(b)

ds

ϕ(s)
=

b∫
3b

ds = −2b ≥ θ2 ⇒ b ≤ −1

2
θ2.

Constant c can be found from the relation

− 1
2 θ2∫
c

ds = −θ2
2
− c ≥ θ2 ⇒ c ≤ −3

2
θ2.

Them, from (8),

V (x) = −x ≤ min

{
−θ2,−

3

2
θ2

}
⇒ x ≥ 3

2
θ2.

Hence, for a given θ2 > 0, the initial set X0 ={
x ≥ 0 : x ≥ 3

2θ2
}

ensures the safety property of (4) (see
Figure 1).

The following theorem proposes sufficient conditions for
the safety in the case when the condition (6) holds true
for any a < 0.

Theorem 4. Let there exist a continuously differentiable
function V : X → R for system (1) such that



V (x) ≤ 0 ∀x ∈ XSAFE

V̇ (x) ≤ ϕ(V (x)) ∀x ∈ XSAFE

V (g(x)) ≤ ψ(V (x)) ∀x ∈ XSAFE

V (x) > 0 ∀x ∈ XUNSAFE

(11)

for some continuous functions ϕ : (−∞, 0] → [0,∞) and
ψ : (−∞, 0]→ (−∞, 0]. If for any a < 0

θ2 ≤
0∫
a

ds

ϕ(s)
(12)

then, solutions to (1) cannot reach the unsafe set XUNSAFE

from the initial set X0 = XSAFE.

Proof. Similarly to the proof of Theorem 2, condition (12)
implies that any trajectory of (1) starting in x0 ∈ XSAFE

with V (x0) < 0 remains in the safe region.

Additionally, (12) implies ϕ(0) = 0 since (12) holds true
for any a < 0. Hence, trajectories of (1) corresponding
to the initial value x0 with V (x0) = 0 also remain inside
XSAFE under the continuous dynamics of the system. The
discontinuous jumps cannot transfer the state to the unsafe
region due to the properties of the rate function ψ. Hence,
X0 coincides with the XSAFE. The distance θ2 between
the jumps does not influence the safety property of the
system. 2

Theorem 4 is applicable for the safety verification of the
system from Example 1.

Example 1 (revisited). System (3) satisfies safety prop-
erty according to the Proposition 1. Let us verify safety us-
ing Theorem 4. Pick the same barrier function V (x) = −x.
Then, conditions (5) are satisfied with ϕ(s) = −s and
ψ(s) = s

2 . Let us verify (12):

0∫
a

ds

ϕ(s)
= −

0∫
a

ds

s
= {ln |s|}a0 =∞ ≥ θ2.

From Theorem 4, X0 = [0,∞) for any θ2 > 0, i.e., the
frequency of jumps does not influence the safety property
of the system. Exactly the same conclusion follows from
Proposition 1.

Finally, the usage of Theorem 2 is demonstrated for non-
scalar impulsive system.

Example 3. Let x(t), y(t) ∈ R, n ∈ N,

XSAFE =
{

(x, y) ∈ R2 : x2 + y2 ≥ 1
}
,

XUNSAFE =
{

(x, y) ∈ R2 : x2 + y2 < 1
}
.

Find X0 satisfying safety property for the system

ẋ = −x+ y, t 6= nθ, x =
√

2x−, t = nθ,

ẏ = −x− y, t 6= nθ, y =
√

2y−, t = nθ

depending on parameter θ > 0.

Pick V (x, y) = 1 − x2 − y2 as a candidate for barrier
certificate. Then,

V̇ (x, y) = −2x(−x+ y)− 2y(−x− y) = 2x2 + 2y2

= −2(1− x2 − y2) + 2 ⇒ ϕ(s) = −2s+ 2

and

V (g(x, y)) = V (
√

2x,
√

2y) = 1− 2x2 − 2y2

= 2V (x, y)− 1 ⇒ ψ(s) = 2s− 1.
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2 , trajectories arrive inside a unit

circle (unsafe region) for any initial value, e.g., x0 =
(10, 10).

Condition (6) leads to

θ ≤
0∫
a

ds

2(1− s)
=

ln (1− a)

2
⇒ a ≤ 1− e2θ. (13)

From (7), it follows that

θ ≤
b∫

2b−1

ds

2(1− s)
=

ln 2

2
∀b ≤ 0. (14)

Since (14) holds true for b = 0, constant c coincides
with the constant a from the relation (13). Then, from
Theorem 2, X0 =

{
(x, y) ∈ XSAFE : 1− x2 − y2 ≤ a

}
.

Finally, combining with (13), (14), the desired set of initial
values X0 is given by

X0 =

{
(x, y) ∈ XSAFE : x2 + y2 ≥ e2θ, θ ≤ ln 2

2

}
.

Theorem 2 suggests that if the time-distance between
jumps is larger than ln 2

2 , the safety property cannot by
guaranteed even for very large initial values (see Figure 2).
If the distance between jumps θ ≤ ln 2

2 , there is a depen-
dence between θ and a region of the ’safe’ initial values
(see Figure 3).

4. EXPONENTIAL VERSION OF THEOREM 2

In this section, a particular case of Theorem 2 with linear
functions ϕ and ψ is considered. Sufficient conditions that
are based on linear rates do not require computationally
difficult integral conditions (6), (7). However, they pro-
vide more conservative estimates for the distance between
jumps compared to the ones with nonlinear rates.

Theorem 5. Let for system (1) there exist a continuously
differentiable function V : Rn → R such that

V (x) ≤ 0 ∀x ∈ XSAFE

V̇ (x) ≤ −ϕ1V (x) + ϕ2 ∀x ∈ XSAFE

V (g(x)) ≤ ψ1V (x)− ψ2 ∀x ∈ XSAFE

V (x) > 0 ∀x ∈ XUNSAFE

(15)

for some positive constants ϕ1, ϕ2, ψ1, ψ2 > 0. If for some
a < 0, b ≤ 0 the following conditions
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2 , trajectories arrive inside a unit circle

(unsafe region) only for the initial values lying inside
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a ≤ ϕ2

ϕ1

(
1− eϕ1θ2

)
, (16)

eϕ1θ2 ≤ ϕ2 − ϕ1(ψ1b− ψ2)

ϕ2 − ϕ1b
(17)

hold true, then the solutions to (1) cannot reach the unsafe
set XUNSAFE from the initial set

X0 =
{
x ∈ XSAFE : V (x) ≤ a+ eϕ1θ2b

}
. (18)

Proof. Proof follows directly from Theorem 2 by plugging
linear functions into the equations (5)-(8). 2

Example 3 (revisited). Conditions (15) of Theorem 5 are
satisfied with (ϕ1, ϕ2, ψ1, ψ2) = (2, 2, 2, 1). From (16),(17),
and (18) it follows that

X0 =

{
(x, y) ∈ XSAFE : V (x, y) ≤ 1− e2θ, θ ≤ ln 2

2

}
.

5. EXAMPLE WITH NONLINEAR RATE
FUNCTIONS ϕ AND ψ

In this section, the application of Theorem 2 to impulsive
system with nonlinear flow and jump maps is demon-

strated. For this case it is essentially important to employ
barrier certificates with nonlinear rates ϕ, ψ in order to
derive less conservative sufficient conditions compared to
the ones employing linear rates. Further examples and
comparison between linear and nonlinear rates of the cor-
responding auxiliary functions in the context of stability
analysis of impulsive systems can be found in (Feketa and
Bajcinca, 2019a) and (Mancilla-Aguilar et al., 2019).

Example 4. Let x(t) ∈ R, n ∈ N,

XSAFE = {x ∈ R : |x| ≥ 1} ,
XUNSAFE = {x ∈ R : |x| < 1} .

Find X0 satisfying safety property for the system

ẋ = −x3, t 6= nθ, x = (x−)2, t = nθ,

depending on parameter θ > 0.

Pick V (x) = 1−x2 as a candidate for the barrier certificate.
Then,

V̇ (x) = −2x(−x3) = 2x4

= 2(1− V (x))2 ⇒ ϕ(s) = 2(1− s)2

and
V (g(x)) = V (x2) = 1− x4

= 1− (V (x)− 1)2 ⇒ ψ(s) = 2s− s2.
Condition (6) leads to

θ ≤
∫ 0

a

ds

2(1− s)2
=

1

2(1− s)
|0a

⇒ a ≤ − 2θ

1− 2θ
if only θ ≤ 1

2
.

From (7), one gets

θ ≤
∫ b

2b−b2

ds

2(1− s)2
=

1

2

(
1

1− b
− 1

1− 2b+ b2

)
.

From the last inequality the relation between θ and b is
given by

θ ≤ − b

2(1− b)2
. (19)

Values of b satisfying (19) lie in the interval [b−, b+] with

b± =
−(1− 4θ)±

√
1− 8θ

4θ
if only θ ≤ 1

8
.

According to Remark 1, the maximal value of b should be
chosen. Hence,

b =
−(1− 4θ) +

√
1− 8θ

4θ
.

Since θ ∈ (0, 18 ], the corresponding values of b lie in the
interval [−1, 0). Finally,

θ ≤
∫ −(1−4θ)+

√
1−8θ

4θ

c

ds

2(1− s)2

⇒ c ≤ −1− 2θ − (1 + 2θ)
√

1− 8θ

2θ(1 +
√

1− 8θ)
.

Summarizing, the desired set of initial values is given by

X0 =
{
x ∈ XSAFE : V (x) ≤ min

{
− 2θ

1− 2θ
,

−1− 2θ − (1 + 2θ)
√

1− 8θ

2θ(1 +
√

1− 8θ)

}
, θ ≤ 1

8

}
.

(20)

For the distances between impulsive jumps θ ≤ 1
8 one can

always find such initial values (from (20)) that do not



violate safety property. Starting positions should not be
too close to the unsafe region.

Case study : Let θ = 3
32 <

1
8 . Then, a ≤ − 3

13 , c ≤ − 7
9 , and

1− x2 ≤ −7

9
⇒ |x| ≥ 4

3
.

The set of initial values is then defined as X0 ={
x ∈ XSAFE : |x| ≥ 4

3

}
.

6. CONCLUSION

New sufficient conditions for the safety verification of
impulsive systems with fixed moments of jumps have
been derived. Important feature of the these conditions is
usage of nonlinear rates ϕ, ψ for the corresponding barrier
certificates V . This makes possible to apply the results of
the paper to nonlinear impulsive systems with different
types of nonlinearity in flow and jump maps.

As for the next steps, finding analytical methods for the
barrier certificates construction and computational algo-
rithms for the numerical verification of the conditions (6),
(7) are of a high interest. Another interesting direction is
an extension of the proposed approach to switched systems
and impulsive systems with state-dependent moments of
jumps.
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