
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Temporal Planning as Refinement-Based Model Checking

Alexander Heinz,1 Martin Wehrle,2 Sergiy Bogomolov,3
Daniele Magazzeni,4 Marius Greitschus,1 Andreas Podelski1

1University of Freiburg, Germany, 2University of Basel, Switzerland,
3Australian National University, Australia, 4King’s College London, UK

h.alexander2@gmail.com, sergiy.bogomolov@anu.edu.au, daniele.magazzeni@kcl.ac.uk,
greitsch@informatik.uni-freiburg.de, podelski@informatik.uni-freiburg.de

Abstract

Planning as model checking based on source-to-source com-
pilations has found increasing attention. Previously proposed
approaches for temporal and hybrid planning are based on
static translations, in the sense that the resulting model check-
ing problems are uniquely defined by the given input plan-
ning problems. As a drawback, the translations can become
too large to be efficiently solvable. In this paper, we address
propositional temporal planning, lifting static translations to
a more flexible framework. Our framework is based on a re-
finement cycle that allows for adaptively computing suitable
translations of increasing size. Our experiments on temporal
IPC domains show that the resulting translations to timed au-
tomata often become succinct, resulting in promising perfor-
mance when applied with the directed model checker MCTA.

Introduction
In this paper, we address temporal planning as model
checking based on source-to-source transformations. Tem-
poral planning is a challenging area, for which many ap-
proaches have been proposed (Vidal and Geffner 2004;
Eyerich, Mattmüller, and Röger 2009; Coles et al. 2010;
2011; Gerevini, Saetti, and Serina 2010; Vidal 2014; Wang
and Williams 2015; Rankooh and Ghassem-Sani 2015). To
the best of our knowledge, the only attempt to translate tem-
poral planning to automata-based model checking is a (non-
archival) workshop paper by Dierks et al. (2002), which stat-
ically translates temporal planning problems to networks of
timed automata.

To the best of our knowledge, all existing source-to-
source compilation approaches for planning rely on a static
translation, i. e., on a fixed translation given the input plan-
ning problem. A common problem with this approach is
the size of the resulting translation, which usually grows
quickly for realistic planning problems. In particular, for
every automaton in the translation, a separate continuous
(i. e., real-valued) clock variable is introduced in general,
which is supposed to measure the time the automata are run-
ning. These additional clock variables can represent a severe
bottleneck, because the efficiency of timed automata model
checkers like UPPAAL (Behrmann, David, and Larsen 2004;
Behrmann et al. 2006) or MCTA (Kupferschmid et al. 2008;

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Wehrle and Kupferschmid 2012) crucially depends on the
number of clocks in the model.

As a central generalization to previous approaches, we
move from static to dynamic encodings in order to tackle
the problem of (too) large translations. Our dynamic en-
codings are computed based on refinement cycles, which
compute translations adaptively based on the input plan-
ning problem. For the evaluation, we apply directed model
checking on the translated model checking problem, based
on the model checker MCTA (Kupferschmid et al. 2008;
Wehrle and Kupferschmid 2012). The experiments show
promising performance on common temporal IPC domains.

For a more detailed version of the paper, including the
proofs, we refer to a technical report (Heinz et al. 2019).

Preliminaries
We consider propositional temporal planning with PDDL
2.1 at level 3 (Fox and Long 2003). For a set P of proposi-
tions and a real-valued time variable t, a state is a valuation
of the propositions in P , together with a value from the real
numbers assigned to t. The value of p ∈ P and time variable
t in state s is denoted by s[p] and s[t], respectively.

Definition 1 (Planning Task). A planning task is a tuple Π =
(P ,A, s0, G), where P is a finite set of propositions, A is
a finite set of (durative) actions, s0 is the initial state with
s0[t] = 0, and G the goal specification.

Durative actions a have a non-zero duration dur(a). Fur-
thermore, a has three sets of preconditions, representing the
propositions that must hold when a starts (denoted by pre`),
the propositional invariant pre↔ that must hold throughout
a’s execution, and the conditions prea that must hold at a’s
end. Similarly, a has four sets of effects: effects that are ap-
plied when the action starts (eff+` and eff−` , denoting propo-
sitions that are added and deleted, respectively), and effects
that are applied at a’s end (denoted by eff+a and eff−a).

Timed Automata
Timed automata are introduced by Alur and Dill (1994),
representing finite state automata extended with real-valued
clock variables. Clock variables x are real-valued, and obey
the differential equation ẋ = 1 to represent the increase of
time. Later on, the formalism has been extended to also fea-
ture integer variables (Behrmann, David, and Larsen 2004).

195

Let I and C be global sets of integer and clock vari-
ables, respectively. For variables n,m ∈ I , comparators ./
∈ {<,≤, 6=,≥, >}, we denote the set of integer constraints
of the form n ./ c, where c ∈ N, by IC , and the set of
integer assignments of the form n := m and n := c with
IA. Analogously, for clock variables x ∈ C, the set of clock
constraints of the form x ./ c is denoted CC , and the set of
clock resets of the form x := 0 with CR. For a set A, the
powerset of A is denoted by 2A.

Definition 2 (Timed Automata). A timed automaton is a tu-
pleA = (Loc, Inv , E), where Loc is a finite set of locations,
Inv : Loc → 2CC is a function assigning clock invariants to
locations, and E a finite set of labeled edges between loca-
tions in Loc. For edge e ∈ E, e is labeled with a guard con-
sisting of integer and clock constraints from IC ∪ CC , and
with an effect consisting of integer assignments and clock
resets from IA ∪ CR.

A system S = {A1, . . . ,An} of timed automata is defined
as a set of timed automata A1, . . . ,An.

For a system of timed automata S = {A1, . . . ,An} with
Ai = (Loci, Inv i, Ei), the semantics of S is defined as fol-
lows. A state s is a mapping fromAi to locations in Loci for
all 1 ≤ i ≤ n, together with an evaluation of the variables
in I and C to their respective domains.

States can be represented symbolically based on zones,
yielding a symbolic state space Z , called the zone
graph (Bengtsson and Yi 2003).

For a more detailed description, the reader is referred to
the literature (Bengtsson and Yi 2003).

Dynamic Encoding Refinement
We tackle the problem of static and potentially large trans-
lations by lifting the approach of Bogomolov et al. (2014a),
providing a hierarchy of encodings based on iterative trans-
lation refinement. As a first (and minor) contribution, and in
particular as the basis for our further approach, we adapt the
translation of Bogomolov et al. (2014a) to temporal plan-
ning and timed automata (called the base encoding in the
following). We then introduce our refinement-based transla-
tion approach using underapproximations.

Base Encoding
Each durative action a ∈ A is translated to a correspond-
ing timed automaton Aa. The translation supports the ep-
silon separation property, which guarantees that actions do
neither start nor end at the same time point (Fox and Long
2006). We adapt the translation of Bogomolov et al., taking
into account the different features and limitations of timed
automata compared to hybrid automata.

Duration normalization. For epsilon separation, ε is usu-
ally selected by the user as a small positive real value < 1 to
enforce all actions to start or end with a minimal offset of ε.
In contrast, to guarantee decidability of reachability, timed
automata only support clock comparisons to integer values.
We normalize a given ε ∈ (0, 1) in the form ε = 10−k for
k ∈ N to 1, yielding the normalized duration dur(a)/ε ∈ N
for all durative actions a.

Model of propositional invariants. For a durative action
a, propositional invariants pre↔ of a are modeled by ensur-
ing that pre↔ holds when a is started, and pre↔ is not vio-
lated by any other action during the execution of a. Hence,
actions a′ with a′ 6= a are neither allowed to start nor to
end if a′ violates pre↔ when a is running. To recognize
this in the translation, we introduce integer variables lock⊥p
and lock>p for all propositions p, with the semantics that
lock>p = k (or lock⊥p = k, respectively) iff k durative ac-
tions are running that require p to have value true (or false,
respectively). The values k of these lock variables are up-
dated when actions start and end, respectively.

Action translation. For a given action a, we adapt the “4
location structure” of the translation Aa (Bogomolov et al.
2014a). The schematic structure is rehashed in Fig. 1. Fol-
lowing Bogomolov et al. (2014a), Aa simulates the execu-
tion phases “off”, “starting”, “running”, and “finishing”.

T≤ ε

T≤ dur(a)T≤ dur(a)+ε

T:=0

T=ε

T=dur(a)

T=dur(a)+ε

Figure 1: Global structure of timed automaton Aa

In general, each automaton Aa refers to a separate clock
T that keeps track of a’s duration. For brevity in Fig. 1, we
have only displayed the guards, invariants, and effects that
refer to T , leaving out the remaining propositional guards
and effects, and integer constraints and effects to provide a
locking mechanism to ensure the ε-property. These are mod-
eled in a straight forward way with integer variables. For
example, propositional preconditions and effects of a are
modeled as integer constraints in the guard and as integer
assignments in the effect of the corresponding edge in Aa.

Translation of planning tasks. The base encoding of a
planning task Π = (P ,A, s0, G) to a system of timed au-
tomata is rather straight forward: The propositions P are
translated to integer variables with domain {0, 1}, and for
A = {a1, . . . , an}, we have the timed system SΠ :=
{Aa1 , . . . ,Aan} of corresponding timed automata.

Theorem 1. Let Π be a planning task and SΠ be its base
encoding of timed automata. Then every symbolic plan on
the zone graph of SΠ corresponds to a concrete plan in Π.

Dynamic Encoding Framework
In this section, we provide a framework for computing a
hierarchy of translations, which represent underapproxima-
tions of the original planning task with a fewer number of
clock variables. This idea has been investigated for classical
planning by Heusner et al. (2014). Generally, approxima-
tions and their refinements have been thoroughly studied for

196

planning and model checking. At the same time, such ap-
proaches usually rely on overapproximations (Clarke et al.
2000; Seipp and Helmert 2018; Bogomolov et al. 2014b),
while our framework employs underapproximations.

We propose an encoding hierarchy which yields underap-
proximations in a slightly different way, by trading the num-
ber of clocks in the model versus the number of actions that
are allowed to be applied in parallel. In the encoding, actions
that are not allowed to be applied in parallel can share the
same clock variable, because the corresponding automata do
not simulate running the corresponding actions in parallel.
To conveniently formalize this idea, we introduce the notion
of bucket-based encodings. For an automatonA that models
action a, we will denote A’s clock variable by clock(A).

Definition 3 (Bucket-Based Encoding). Consider a plan-
ning task Π = (P ,A, s0, G) with A = {a1, . . . , an}
and base encoding SΠ = {Aa1 , . . . ,Aan}. Let B =
{B1, . . . , Bm} be a set of buckets of actions, such that
Bi ⊆ A for 1 ≤ i ≤ m,

⋃
Bi = A, and Bi ∩ Bj = ∅ for

i 6= j. The bucket-based encoding SΠ,B with respect to Π
and B is defined based on SΠ as follows. For all 1 ≤ i ≤ m
and buckets Bi = {ai1, . . . , aini

}:

1. For all actions aik, a
i
t ∈ Bi, clock(Aai

k) = clock(Aai
t),

i. e., all action automata for actions in the same bucket
have the same clock variable.

2. The automata A1, . . . ,Ani corresponding to the actions
in Bi embody an additional integer variable pi with do-
main {0, 1}, initially equal to 0, such that pi is required
to be zero for a ∈ Bi in order to start a, pi is set to 1 once
a is started, and reset to 0 again once a is finished.

The latter condition in Def. 3 ensures that at most one
automaton in each bucket is running at every time point.

Bucket-based encoding refinement. A way to refine is
to successively allow more behavior within a refinement
cycle. Generalized to temporal planning as model check-
ing with bucket-based encodings, the refinement algorithm
starts with the most strict bucket-based encoding SΠ,B

0 , al-
lowing for no parallelism at all. Inductively, if no plan can be
found in SΠ,B

n (i. e., in the bucket-based encoding applied in
iteration n), then the encoding is refined to SΠ,B

n+1 such that
strictly more behavior is possible in the refined encoding.
The skeleton of the algorithm is provided in Algorithm 1.

To ensure completeness, there are two conceptual ques-
tions to be addressed, namely 1) how and 2) when to refine
the encodings. We discuss these points in the following.

1) We establish a progress property guaranteeing that the re-
finement process eventually converges to a planning task
with the same semantics as the original one by splitting at
least one bucket in B into at least two buckets.

2) The decision of refining SΠ,B
n can take place at any point

in time when no solution has been found so far, if SΠ,B
n 6=

SΠ,B
n+1. In contrast, if SΠ,B

n = SΠ,B
n+1, then “no solution

found in SΠ,B
n ” triggers iff the whole zone graph is ex-

plored without finding a solution.

Algorithm 1 Skeleton of refinement
1: function PLAN-WITH-REFINEMENT(P , A, s0, G)
2: n := 0
3: B := {A} // no parallelism initially
4: while true do
5: explore zone graph of SΠ,B

n

6: if no solution found in SΠ,B
n then

7: if SΠ,B
n 6= SΠ,B

n+1 then
8: n := n+ 1
9: else

10: return unsolvable
11: end if
12: else
13: return solution
14: end if
15: end while
16: end function

We emphasize that the discussions of questions 1) and 2)
are of conceptual nature, with the primary objective of guar-
anteeing completeness of the resulting planning algorithm
(we provide a concrete instantiation in the next section).
Proposition 1. Consider a planning task Π, and let S =

{SΠ,B
0 ,SΠ,B

1 , . . . } be bucket-based encodings of Π com-
puted based on 1) and 2). Then there exists a bucket-based
encoding SΠ,B

i ∈ S such that there exists a trace in SΠ,B
i

that corresponds to a plan in Π iff Π is solvable.

Framework Instantiation
We provide a simple instantiation of the refinement frame-
work with a focus on the conceptual question on how to
refine the encoding. A particular (and intuitive) situation
where actions a and a′ potentially need to be applied in par-
allel is that a’s start effect supports a condition that is needed
by a′. In particular, this is the case if a supports a condition
that is needed as an invariant throughout the whole execu-
tion of a′. In the following, we propose a refinement scheme
by successively splitting buckets according to actions that
support invariants and preconditions of other actions. We
say that an action a supports an invariant of action a′, de-
noted by a i a′, if the start effect of a sets a variable
to a value needed by the propositional invariant of a′, i. e.,
there exists a proposition p ∈ P such that effa` |= p and
prea

′

↔ |= p. More generally, we say that a supports an in-
variant of a′ after n steps, denoted by a n

i a′, if there exist
actions a1, . . . , an such that a i a1, . . . , an i a

′. Analo-
gously, we say that a supports a precondition of a′, denoted
by a p a′, if there exists a proposition p ∈ P such that
effa` |= p, and additionally, prea

′

` |= p or prea
′

a |= p. We
define a n

p a′ on propositions analogously to a n
i a′.

Furthermore, for a set of buckets B, we say that B respects
 n

i if for all actions a1, . . . , an, ai 6= aj for i 6= j, with
a1 i a2, . . . , an−1 i an, these actions are located in dif-
ferent buckets in B, i. e., there are buckets B1, . . . , Bn ∈ B,
Bi ∩ Bj = ∅ for i 6= j, and a1 ∈ B1, . . . , an ∈ Bn. The
corresponding definition for p is analogous.
Definition 4 (Encoding Refinement). Let Π be a planning
task, B be a set of buckets, and SΠ,B be an encoding for Π

197

coverage makespan
Dom.
Crewp.
Elev.
Opens.
Parcp.
Pegsol.
Sokob.
Match.
TMS
T&O
Drv.

MCTAr MCTAb TFD OPTIC POPF COLIN ITSAT
30 30 30 30 28 30 30
12 2 30 19 14 16 13
30 19 30 30 30 30 24
30 15 22 12 17 12 25
30 27 29 29 28 28 30
12 11 12 14 12 12 16

20 (2) 20 20 0 20 20 20
0 (3) 0 0 0 0 0 14
2 (2) 0 18 9 8 8 5

11 (7) 0 7 0 10 10 15

MCTAr MCTAb TFD OPTIC POPF COLIN ITSAT
7769.1 3316.6 6239.7 2622.9 2747.1 2622.9 2836.7
587.0 250.0 309.4 172.0 180.5 172.0 243.7

1085.3 414.2 613.8 123.7 177.6 123.7 211.8
565782.6 181110.3 201830.6 75255.3 82077.5 75255.3 74555.4

14.4 10.2 9.2 7.6 7.5 7.5 7.1
31.7 28.5 19.7 23.0 22.5 22.5 20.6
74.2 57.0 72.6 - 57.0 57.0 57.2

- - - - - - 20
175.6 - 101.5 40.0 38.0 42.5 33.3
382.6 - 268.3 - 122.3 122.3 142.6

Table 1: Overview of coverage and makespan results (best results in bold). Abbreviations: Crewp.: Crewplanning, Elev.: Ele-
vators, Opens.: Openstacks, Parcp.: Parcprinter, Pegsol.: Peg Solitaire, Sokob.: Sokoban, Match.: Matchcellar, TMS: Temporal
Machine Shop, T&O: TurnAndOpen, Drv: DriverLog Shift

and B. The refinement SΠ,Br
r of SΠ,B is defined as follows:

1. If there exists n ∈ N such that B respects n−1
i , but does

not respect n
i , then compute Br by splitting the buckets

in B such that Br respects n
i .

2. If B respects N
i for a maximal N ∈ N, then apply bullet

point 1. using the relation n
p instead of n

i .

3. If B respects N
i and M

p for maximal N,M ∈ N, split
B so that only actions that cannot be applied in parallel
according to Π’s semantics occur in equal buckets.

Definition 4 guarantees that an exact encoding can eventu-
ally be computed. The third point can be implemented, e. g.,
by having each action in a separate bucket, or by sharing the
same bucket only if actions have mutex invariants.

Proposition 2. Plan-with-refinement (Alg. 1) when comput-
ing SΠ,B

n+1 from SΠ,B
n according to the encoding refinement

(SΠ,Br
r from SΠ,B as in Def. 4) is completeness preserving.

The most canonical (though not efficient) strategy when
to refine is when the zone graph is explored completely.

Experiments
We conducted a feasibility study on common IPC domains,
using an implementation that translates PDDL to timed au-
tomata and refines if no plan is found. As a basis, we
used the model checker MCTA (Kupferschmid et al. 2008;
Wehrle and Kupferschmid 2012) applied with greedy best-
first search and the hU heuristic (Kupferschmid et al. 2006).
So far, we have not optimized the hU heuristic to our specific
setting. We refine when the current zone graph is explored
completely. In this case, we use a simplified variant of the
encoding strategy of Def. 4 to decide how to refine. The im-
plementation of our refinement approach is called MCTAr.

We compare MCTAr to Temporal Fast Downward (TFD)
(Eyerich, Mattmüller, and Röger 2009), OPTIC (Benton,
Coles, and Coles 2012), POPF (Coles et al. 2010), COLIN
(Coles et al. 2012), and ITSAT (Rankooh and Ghassem-Sani
2015). We also compare to MCTA applied with the base en-
coding, called MCTAb, that allows for full parallelism. In
our experiments, some action automata in the base encoding
already share clocks if the corresponding actions are not ap-
plicable in parallel (i. e., still allowing full parallelism). We

used the propositional temporal domains Crewplanning, El-
evator, Openstacks, Parcprinter, Peg Solitaire, and Sokoban
from IPC’08, Matchcellar, Temporal Machine Shop, and
TurnAndOpen from IPC’141, and the DriverLog Shift do-
main (Coles et al. 2009). We used a timeout of 30 minutes
and a memory limit of 4 GB per run.

Table 1 shows the results of our evaluation. The cover-
age results show the number of tasks where a goal trace
has been found. For the domains that require concurrency,
we not only report the number of tasks for which a goal
trace has been found, but also the number of refined en-
codings, in parentheses, that were used for all runs. MCTAr

often finds goal traces for a similar number of tasks com-
pared to the other tools, and offers its strengths in Pegsol
and Parcprinter. In particular, in Parcprinter, MCTAr is the
only implementation that solves all tasks. In addition, we
observe that, for most domains, the coverage of the refine-
ment approach is considerably higher compared to the base
encoding (MCTAb). The makespan results in Table 1 show
the average makespans per domain on the commonly solved
tasks, i. e., on the tasks solved by all planners. To evaluate
the “pure” makespan of the plans found by the search, the
results for TFD are (like the results for MCTAr and MCTAb)
given without improving the makespan in a post-processing
step. Generally, as our approach trades efficiency versus par-
allelism, the makespan computed by MCTAr is expected to
be higher compared to the other temporal planners, which
can be observed for all domains. MCTAb mostly finds traces
with shorter makespan than MCTAr since MCTAb allows for
full parallelism and MCTAr uses an underapproximation.

Conclusions
We proposed a generic framework for temporal planning as
model checking which is based on dynamic encoding re-
finement. Empirically, we provided an instantiation which
shows the feasibility of our approach, revealing complemen-
tary strengths to well-established planners. To further exploit
its potential, it will be interesting to investigate more fine-
grained instantiations, including more sophisticated strate-
gies when to refine the encodings, as well as specific adap-
tations of the applied heuristic in MCTA.

1The IPC domains are available at https://github.com/potassco/
pddl-instances.

198

Acknowledgments
We thank the anonymous reviewers for their comments,
which helped improve the paper.

Sergiy Bogomolov was partially supported by the ARC
project DP140104219 (Robust AI Planning for Hybrid Sys-
tems) and by the Air Force Office of Scientific Research un-
der award number FA2386-17-1-4065. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of the United States Air Force. Daniele Maga-
zzeni was partially supported by InnovateUK under the grant
TS/R018790/1.

References
Alur, R., and Dill, D. 1994. A theory of timed automata.
Theoretical Computer Science.
Behrmann, G.; David, A.; Larsen, K.; Håkansson, J.; Pet-
tersson, P.; Yi, W.; and Hendriks, M. 2006. UPPAAL 4.0.
In QEST.
Behrmann, G.; David, A.; and Larsen, K. 2004. A tutorial
on Uppaal. In SFM-RT.
Bengtsson, J., and Yi, W. 2003. Timed automata: Semantics,
algorithms and tools. In Lectures on Concurrency and Petri
Nets.
Benton, J.; Coles, A.; and Coles, A. 2012. Temporal plan-
ning with preferences and time-dependent continuous costs.
In ICAPS.
Bogomolov, S.; Magazzeni, D.; Podelski, A.; and Wehrle,
M. 2014a. Planning as model checking in hybrid domains.
In AAAI.
Bogomolov, S.; Frehse, G.; Greitschus, M.; Grosu, R.;
Pasareanu, C. S.; Podelski, A.; and Strump, T. 2014b.
Assume-guarantee abstraction refinement meets hybrid sys-
tems. In HVC.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-guided abstraction refinement. In
CAV.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning using
planner-scheduler interaction. Artificial Intelligence.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In ICAPS.
Coles, A.; Coles, A.; Clark, A.; and Gilmore, S. 2011. Cost-
sensitive concurrent planning under duration uncertainty for
service-level agreements. In ICAPS.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN:
Planning with continuous linear numeric change. JAIR.
Dierks, H.; Behrmann, G.; and Larsen, K. 2002. Solv-
ing planning problems using real-time model checking. In
AIPS-Workshop Planning via Model-Checking.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the context-enhanced additive heuristic for temporal and nu-
meric planning. In ICAPS.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. JAIR.

Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. JAIR.
Gerevini, A.; Saetti, A.; and Serina, I. 2010. Temporal
planning with problems requiring concurrency through ac-
tion graphs and local search. In ICAPS.
Heinz, A.; Wehrle, M.; Bogomolov, S.; Magazzeni, D.;
Greitschus, M.; and Podelski, A. 2019. Temporal planning
as refinement-based model checking: Proofs and additional
descriptions. Technical Report 288, University of Freiburg.
Heusner, M.; Wehrle, M.; Pommerening, F.; and Helmert,
M. 2014. Under-approximation refinement for classical
planning. In ICAPS.
Kupferschmid, S.; Hoffmann, J.; Dierks, H.; and Behrmann,
G. 2006. Adapting an AI planning heuristic for directed
model checking. In SPIN.
Kupferschmid, S.; Wehrle, M.; Nebel, B.; and Podelski, A.
2008. Faster than Uppaal? In CAV.
Rankooh, M. F., and Ghassem-Sani, G. 2015. ITSAT: An
efficient SAT-based temporal planner. JAIR.
Seipp, J., and Helmert, M. 2018. Counterexample-
guided Cartesian abstraction refinement for classical plan-
ning. JAIR.
Vidal, V., and Geffner, H. 2004. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. In AAAI.
Vidal, V. 2014. YAHSP3 and YAHSP3-MT in the 8th inter-
national planning competition. In IPC.
Wang, D., and Williams, B. 2015. tBurton: A divide and
conquer temporal planner. In AAAI.
Wehrle, M., and Kupferschmid, S. 2012. Mcta: Heuristics
and search for timed systems. In FORMATS.

199

