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Abstract Hybrid automata are an important formalism for
modeling dynamical systems exhibiting mixed discrete–
continuous behavior such as control systems and are
amenable to formal verification. However, hybrid automata
lack expressiveness compared to integrated model-based
design frameworks such as the MathWorks’ Simulink/
Stateflow (SlSf). In this paper, we propose a technique
for correct-by-construction compositional design of cyber-
physical systems (CPS) by embedding hybrid automata
into SlSf models. Hybrid automata are first verified using
verification tools such as SpaceEx and then automatically
translated to embed the hybrid automata into SlSf models
such that the properties verified are transferred and main-
tained in the translated SlSf model. The resultant SlSf
model can then be used for automatic code generation and
deployment to hardware, resulting in an implementation.
The approach is implemented in a software tool building
on the HyST model transformation tool for hybrid sys-
tems. We show the effectiveness of our approach on a CPS
case study—a closed-loop buck converter—and validate the
overall correct-by-construction methodology: from formal
verification to implementation in hardware controlling an
actual physical plant.
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1 Introduction

In this paper, we present the theory and associated imple-
mentation for the translation of hybrid automaton models
(used for verification) to the MathWorks Simulink/Stateflow
(SlSf) models, subsequently used for design refinement,
simulation, implementation, and code generation for target
embedded hardware. Our approach is particularly useful if
the design process is structured in a bottom-up fashion. In
other words, we assume that the individual system compo-
nents are first modeled in detail, such as modeling a control
algorithm as a hybrid automaton and verifying properties
(typically safety) for it. These components are then linked
together to form thewhole systemunder considerationwithin
SlSf. This leads to overall system models consisting of het-
erogeneous components where a number of components are
modeled as hybrid automata, but the entire system may be
too complex to formally model and verify. In the last decade,
a number of powerful formal design, analysis, and verifica-
tion tools for hybrid automata such as SpaceEx [8–11,21]
and Flow∗ [16] have emerged. In our proposed approach,
a designer can ensure the correctness of individual compo-
nents before using our translation process to link the system
together in SlSf (see Fig. 1).

We introduce a technique to automatically convert the
hybrid automata into trajectory-equivalent SlSf diagrams.
By trajectory-equivalent, we mean that behaviors (trajec-
tories) of the translated SlSf diagram match those of the
original hybrid automaton. One technical challenge is that
hybrid automata and SlSf differ in semantics: A hybrid
automaton is typically defined with may-semantics with

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-017-0458-1&domain=pdf


S. Bak et al.

Hybrid Automaton
Model

Model Analysis
Verification

Converter

SlSf Model

Translation
(This Paper)

Simulation
Code Generation

Fig. 1 High-level overview of themodel-based design process enabled
by this work. Verification using the hybrid automaton is first performed
in a hybrid systems model checker, and then, we automatically gen-
erate a trajectory-equivalent SlSf diagram. The diagram can then be
embedded into a more complex system, possibly with other, unverified
components (because they are too large to verify, exist for legacy rea-
sons, etc.), and can then be used for code generation and implementation
in actual systems

respect to the discrete transitions, whereas SlSf employs
must-semantics. In other words, a transition in SlSf is taken
as soon as the transition guard is enabled subject to some
numerical aspects with zero-crossing detection, whereas
the hybrid automaton still has the freedom to stay in the
current location as long as the location invariant has not
been violated. In case of nondeterministic hybrid automata,
trajectory equivalence means that the behaviors of the orig-
inal hybrid automaton will be exhaustively explored. Our
approach incorporates additional randomization steps into
the resulting SlSf diagram. In this way, in every run, the
diagram produces a possibly different trace that still reflects
a trajectory from the original hybrid automaton semantics.
After running more and more simulations, we get a better
and better approximation of the reachable state space of the
original hybrid automaton.

Related work Significant research has been performed on
the translation of SlSf diagrams into other analysis tools,
such as hybrid systems model checkers [1,3,7,13,14,29–
31,36,37,40,43]. Agrawal et al. [1] suggest an algorithm
to translate SlSf diagrams into the equivalent Hybrid Sys-
tems Interchange Format (HSIF) [13,14,36,37] models. The
Compositional Interchange Format (CIF) provides a com-
mon input language focused on model compositionality
for networks of hybrid automata [2]. Alur et al. trans-
lated SlSf to linear hybrid automata for applying symbolic
analysis to improve test coverage of SlSf [3]. In a differ-
ent setting, Schrammel et al. [40] consider the translation
problem for complex SlSf diagrams where involved treat-
ment of zero-crossings is needed. Manamcheri et al. [29]
have developed the tool HyLink to translate a restricted
class of SlSf to hybrid automata. Minopoli et al. [30,31]
have developed a theory of urgent semantics for hybrid
automata and the SL2SX tool that translates a restricted
subset of SlSf diagrams to hybrid automata. The applica-
tion of the above techniques is restricted by the fact that no

complete semantics of SlSf is provided (in spite of recent
progress [7,12,22,23,29,38]).

In contrast to all these existing works, we consider the
converse direction, i.e., to translate a given hybrid automa-
ton into an SlSf diagram. Sanfelice et al. [39] have developed
the hybrid equations toolbox (HyEQ) to approximately simu-
late the hybrid systems thatmay include Zeno, zero-crossing,
and nondeterministic behaviors. However, the applicability
of the Simulink Design Verifier (SDV) model checker [42]
integrated with SlSf does not apply to this class of mod-
els, so verification is not possible. In our setting, we benefit
from clear and unambiguous hybrid automata semantics and
may formally verify properties of the hybrid automata prior
to translating them to SlSf diagrams. Pajic et al. [25,33–
35] consider a similar problem of converting timed automata
encoded inUppaal [27] to SlSf diagrams. However, in their
translation, they consider only runs of Uppaal models that
obey the must-semantics. In our work, beyond considering
the much more expressive framework of hybrid automata (as
timed automata are a subclass of hybrid automata), we pro-
vide a translation handling the nondeterminism by producing
trajectory-equivalent SlSf diagrams. Operational seman-
tics of (purely discrete) SlSf have been developed [23],
and alternative formalizations of discrete semantics have
been investigated using, for example, translation from SlSf
to C [38]. In contrast to these prior works, we focus on
continuous-time SlSf diagrams. Another recent line of
research focuses on the translation from Hybrid Commu-
nicating Sequential Processes (HCSP) to Simulink block
diagrams [15,44,45]. In our work, we consider the trans-
lation of the hybrid automaton model, which is extensively
used in the industry for CPS modeling.

Contributions This paper has four primary contributions. (a)
This is the firstwork, as far aswe are aware, to provide a trans-
lation scheme fromhybrid automata toSlSf diagrams,which
is useful as part of a model-based design (MBD) process. (b)
In order to overcome the difference in semantics between the
modeling frameworks, we introduce the notion of trajectory
equivalence and show how the conversion preserves trajec-
tory equivalence with respect to several sources of nondeter-
minism in hybrid automata. (c) We provide an implementa-
tion of the trajectory-equivalent translation scheme as a part
of the HySTmodel translation framework [5], which enables
completely automatic translation of existing hybrid automa-
tonmodels. (d)Weshow the applicability of our contributions
in several case studies where hybrid automata are automat-
ically translated to SlSf for simulation, use in larger SlSf
diagrams, and deployment to actual hardware. For one case
study—a closed-loop buck converter—the entire correct-by-
construction MBD process is illustrated, from verification
through implementation in hardware. This includes formal
verification of the hybrid automaton in SpaceEx, translation
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to SlSf, code generation for the controller in SlSf, then
subsequent compilation, and finally execution in embedded
hardware controlling the physical plant.

Paper organization The remainder of the paper is orga-
nized as follows:After introducing the necessary background
in Sect. 2, we present our trajectory-equivalent translation
scheme in Sect. 3. In Sect. 4, we evaluate our approach on
four case studies. We conclude in Sect. 5.

2 Preliminaries

In this section, we introduce the preliminaries that are needed
for this work. We first define a hybrid automaton model and
discuss its semantics and then do the same for SlSf diagrams.

2.1 Hybrid automata

A hybrid automaton is formally defined as follows.

Definition 1 (Hybrid automaton) A hybrid automaton is a
tuple H Δ= (Loc,Var, Init,Flow,Trans, Inv) with: (a) the
finite set of locations Loc, (b) the set of continuous variables
Var

Δ= {x1, . . . , xn} from R
n , (c) the initial condition, given

by Init(�) ⊆ R
n for each location �, (d) the flow, a determin-

istic function Flow(�) from the variables to their derivatives
for each location �, (e) the discrete transition relation Trans,
where every transition is a tuple (�, g, υ, �′) with: (i) the
source location � and the target location �′, (ii) the guard,
given by a constraint g, (iii) the update, given by a mapping
υ that modifies the variable valuation, and (f) the invariant
Inv(�) ⊆ R

n for each location �.

We use the common . (dot) notation to specifically indicate
components ofH as necessary, e.g.,H.Var are the variables
of H.

The semantics of a hybrid automatonH is defined in terms
of trajectories as follows:A state ofH is a pair (�, x) that con-
sists of a location � ∈ Loc and a point x ∈ R

n . Formally, x is
a valuation of the continuous variables inVar. For the follow-
ing definitions, let T = [0,Δ] be an interval for someΔ ≥ 0.

Definition 2 A trajectory ofH from state s = (�, x) to state
s′ = (�′, x′) is a pair ρ

Δ= (L ,X), where L : T → Loc
and X : T → R

n are functions that define for each time
point in T the location and the values of the continuous vari-
ables, respectively. A sequence of time points where location
switches happen in ρ is denoted by (ξi )i=0...k ∈ T k+1. In
this case, we define the length of ρ as |ξ | = k. Trajectories
ρ = (L ,X), and the corresponding sequence (ξi )i=0...k , must
satisfy the following conditions:

(a) ξ0 = 0, ξi < ξi+1, and ξk = Δ—the sequence of switch-
ing points increases, starts with 0 and ends with Δ,

(b) L(0) = �, X(0) = x, L(Δ) = �′, X(Δ) = x′—the
trajectory starts in s = (�, x) and ends in s′ = (�′, x′),

(c) ∀i ∀t ∈ [ξi , ξi+1) : L(t) = L(ξi )—the location is not
changed during the continuous evolution,

(d) ∀i ∀t ∈ [ξi , ξi+1) : (X(t), Ẋ(t)) ∈ Flow(L(ξi )) holds
and thus the continuous evolution is consistent with the
differential equations of the corresponding location,

(e) ∀i ∀t ∈ [ξi , ξi+1) : X(t) ∈ Inv(L(ξi ))—the continuous
evolution is consistentwith the corresponding invariants,
and

(f) ∀i < k ∃(L(ξi ), g, υ, L(ξi+1)) ∈ Trans : Xend(i) ∈ g
∧X(ξi+1) = υ(Xend(i))∧Xend(i) = limξ→ξ−

i+1
X(ξ)—

every continuous transition is followed by a discrete one,
whereXend(i) defines the values of continuous variables
immediately before the discrete transition at the time
moment ξi+1.

A state s′ is reachable from state s if there exists a trajectory
from s to s′.

A symbolic state s
Δ= (�,R) is a pair,where � ∈ Loc andR

is a convex and bounded set consisting of points x ∈ R
n . The

continuous part R of a symbolic state is also called region.
The symbolic state space of H is called the region space.
The initial set of states Sinit ofH is defined as

⋃
�(�, Init(�)).

The reachable state space Reach(H) of H is defined as the
set of symbolic states that are reachable from some initial
state in Sinit , where the definition of reachability is extended
accordingly for symbolic states. We refer to the set of all the
trajectories ofH starting in Sinit by Traj(H). A safety specifi-
cation P is a given set of symbolic states.A hybrid automaton
H satisfies a safety specification P iff Reach(H) ⊆ P . We
are interested in ensuring that the hybrid automaton is cor-
rect, i.e., satisfies P , and then subsequently translate it for
simulation, integration, and implementation in SlSf as dis-
cussed in the next sections.

2.2 Continuous-time Stateflow diagrams

Simulink is a graphical modeling language for control
systems, plants, and software. Stateflow is a state-based
graphical modeling language integrated within Simulink.
Continuous-time Stateflow diagrams provide methods for
modeling hybrid systems that consist of continuous and dis-
crete states and behaviors. In this section, we describe a
restricted subclass of continuous-time Stateflow diagrams
to which we translate a hybrid automaton. In particular, we
focus only on continuous-time Stateflow state transition dia-
grams, and we do not consider models with hierarchical
states.

Roughly, a Stateflow state transition diagram may be
thought of as an extended state machine with variables of
various types. In addition to states, Stateflow diagrams may
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Fig. 2 Snippet of a general continuous-time Stateflow diagram with a
state �S , a junction j , and four transitions τ1 − τ4

have junctions that are instantaneous. A transition between
states may occur at each simulation time step, whereas mul-
tiple junction transitions may occur in a single simulation
time step.

A continuous-time Stateflow diagram (see Fig. 2) is
roughly analogous to a hybrid automaton, but their behav-
ior differs in several ways. In particular, Stateflow diagrams
(1) are deterministic, (2) have urgent transitions with priori-
ties, and (3) have events such as enabled transitions that are
determined at runtime by zero-crossing detection algorithms.

We define Stateflow diagrams more formally now.

Definition 3 (Stateflow diagram) The tuple S Δ= (LocS ,
JuncS , VarS , TransS , ActionsS) defines the Stateflow dia-
gram. Here, (a) LocS is a finite set of states (also known as
locations), (b) the junctions JuncS are like locations, but all
of which may be evaluated in a single simulation event step
(i.e., they are instantaneous “states”), (c) VarS is a finite set
of variables of various types, and for our formalization we
assume that they are real-valued, (d) the ActionsS(�S) for
each location �S are actions described by MATLAB or C
statements that are performed at different event times sub-
divided into entry, during, and exit actions, where
the entry (resp. exit) action is executed only once when
entering (resp. exiting) the state and the during action per-
forms the continuous-time evolution of the variables of VarS
according to a differential equation (this happens strictly
between entering and exiting), (e) the discrete transition
relation TransS where every transition τ ∈ TransS is for-
mally defined as a tuple (�S ,GuardS ,UpdateS ,TPS , �′

S):
(i) the source location or junction �S ∈ LocS ∪ JuncS
and the target location or junction �′

S ∈ LocS ∪ JuncS ,
(ii) the guard, given by a constraint GuardS , must be sat-
isfied for a transition to be taken, (iii) the update, given by
a mapping UpdateS , defines which variables in VarS are
modified, and to what value (unmodified variables keep their
value), and (iv) the priority, given by TPS , is a natural num-
ber between 1 and od(�S)—the outdegree of (number of
transitions leaving) the state or junction �S—that indicates
the order in which transitions are taken if more than one is
enabled.

Simulating an SlSf diagram produces a simulation tra-
jectory, which is closely related to a trajectory of a hybrid
automaton.

Definition 4 (Simulation trajectory) For an initial state x0,
a time bound Tmax, error bound δ ≥ 0, and time step τ >

0, a simulation trajectory (of length k) is a sequence α
Δ=

((Ri , ti ))i=1...k , where R0 = {x0}, t0 = 0, Ri ⊆ R
n , ti ∈

R
≥0, and (a) ∀i : 0 ≤ ti+1 − ti ≤ τ , tk = Tmax, (b) ∀i ∀t ∈

[ti , ti+1] : the simulation state after time t is in Ri , and (c)
∀i : dia(Ri ) ≤ δ.

Here dia(·) denotes the diameter and δ is used to bloat
the simulation trajectory to handle numerical errors; picking
δ = 0 represents the typical result of a (idealized) numerical
simulation of an SlSf diagram. We note that the various
actions (e.g., entry, during, and exit actions, and
transition updates) are evaluated sequentially, while hybrid
automaton actions are executed concurrently. By Tracδ(S),
we denote the set of all simulation trajectories of an SlSf
diagram S with parameter δ. A simulation trajectory α sat-
isfies a safety specification P if every element α.Ri ⊆ P ,
i.e., P contains the states of the simulation trajectory with
time projected away. An SlSf diagram S satisfies a safety
specification P if all simulation trajectories Tracδ(S) satisfy
P . Note that in practice, any simulation trajectory is finite-
length, although we avoid a finite-length assumption in the
definition of simulation trajectories to relate possibly infi-
nite trajectories of a hybrid automaton with similar possibly
infinite simulation trajectories. Moreover, note that our def-
inition of a trajectory does not allow instantaneous location
switches in the hybrid automaton. This restriction is neces-
sary for practical purposes because SlSf requires executing
a (small) simulation step in each state.

3 Translating a hybrid automaton to a
continuous-time Stateflow diagram

We describe our main contribution, namely how to translate
from a hybrid automaton to an SlSf diagram. For differ-
ent classes of hybrid automata, different translations may be
used, and we discuss two classes primarily based on whether
the hybrid automaton is deterministic or not.

To compare simulation trajectories of an SlSf diagram
with trajectories of a hybrid automaton,we introduce the con-
cept of correspondence.Here,we assume that the δ parameter
of a simulation trajectory is equal to zero.

Definition 5 (Correspondence) A trajectory ρ of a hybrid
automaton H and a simulation trajectory α (with δ = 0) of
an SlSf diagram S correspond to each other if the sequences
of discrete locations, transitions, and transition times encoun-
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tered in both are the same, and the continuous points of the
trajectory and the simulation trajectory match.

The primary goal of our construction is to ensure that the
set of simulation trajectories Tracδ(S) for the SlSf diagram
can be trajectory-equivalent to the original hybrid automa-
ton.

Definition 6 (Trajectory equivalence) An SlSf diagram S
is trajectory-equivalent to a hybrid automaton H if, for
every trajectory ρ ofH, there exists a corresponding (Defini-
tion 5) simulation trajectory α of S, and for every simulation
trajectory α of S, there exists a corresponding trajectory
ρ of H.

3.1 Translating different classes of hybrid automata

As already outlined in Sect. 1, one main difference between
hybrid automata and SlSf diagrams is the absence of non-
determinism in SlSf diagrams. There are several sources of
nondeterminism in the general hybrid automaton formalism.

1. Transitions. If there is more than one outgoing transition
in a location, any of themcan be taken as long as the guard
is enabled and the target location’s invariant is satisfied
after applying the transition update.

2. Dwell times. The amount of time that a hybrid automaton
remains in a location is only determined by the invariant
and the transition guards—it is forced to leave the loca-
tion only by the invariant. It is not sufficient for the guard
to be enabled at some point in time, as the automaton can
still choose to remain in the location until the invariant
becomes false.

3. Initial states. A hybrid automaton is allowed to start in a
whole region, which may be an uncountable number of
possible initial states.

4. Updates. Updates in transitionsmay be nondeterministic.
This gives a (possibly uncountable) number of successor
states after a discrete transition.

5. Flows. Flow definitions in locations may be uncertain.
We do not consider this source of nondeterminism in this
paper.

For the translations, we make the following assumptions
on the original hybrid automaton.

Assumption 1 The hybrid automatonH is Zeno-free, which
means that only finitely many discrete transitions may be
taken in finite time.

Translating deterministic hybrid automata is fairly
straightforward, so we first discuss how to translate deter-
ministic hybrid automata and then discuss the more complex
nondeterministic scenario. There may be additional numeri-
cal issues with SlSf that are outside the scope of this work.

For example, the integration of the differential equations
in SlSf may not be exact, which may cause differences in
observed behavior. In practice, simulations can bemade arbi-
trarily accurate by reducing the simulation time step at a
computational cost.

3.1.1 Translating a deterministic hybrid automaton

The next definition states when a hybrid automaton is deter-
ministic.

Definition 7 A hybrid automaton H is deterministic if, for
any initial state (�, x0) ∈ Sinit for any point x0 ∈ Init(�),
there is one unique trajectory ρ starting from (�, x0). Other-
wise,H is nondeterministic.

Syntactic restrictionsmay be enforced on a hybrid automaton
to ensure it is deterministic. For example, a sufficient condi-
tion for a hybrid automaton to be deterministic includes all of
the following being satisfied: (1) at most one discrete transi-
tion is enabled simultaneously, (2) a discrete transition guard
is enabled when the continuous flow exits the invariant, and
(3) no state can be mapped onto two different states by the
transition updates [26, Lemma 2]. Note that requirement (2)
is not an urgent definition of semantics, but it is a condition
that ensures an enabled transition is forced to occur once it
becomes enabled, so it is in essence a syntactic restriction
that enforces urgency.

Under such assumptions that enforce a hybrid automa-
ton to be deterministic, the translation from the deterministic
hybrid automaton to an SlSf diagram is straightforward and
proceeds as follows. Let S = (LocS , JuncS , VarS , TransS ,
ActionsS) be the SlSf diagram. Instantiate LocS = H.Loc,
JuncS = ∅, and VarS = H.Var. For each location � ∈ Loc
and each corresponding location �S ∈ LocS , and for each
variable v ∈ Var and the corresponding variable vS ∈ VarS ,
we set the ActionsS(�S , vS) during action for vS to be
equal to the flow Flow(�, v) for variable v, and do not
instantiate the entry and exit actions. For continuous-
time Stateflowmodels, the during action is used to specify
an ordinary differential equation for variables, so in essence
this just copies the flow from H to S for each location and
each variable, and the other action types (entry and exit)
are unused.

Finally, we instantiate the transitions as follows. For
each location � ∈ Loc and corresponding location �S ∈
LocS , and for each transition (�, g, υ, �′) ∈ Trans with
a natural number i indicating the iteration count over the
transitions, we instantiate a transition γ ∈ TransS as the
tuple (�S ,GuardS ,UpdateS ,TPS , �′

S), where γ.�S = �,
γ.GuardS = g, γ.UpdateS = υ, TPS = i , and γ.�′

S = �′.
SinceH is deterministic, the choice of the transition priority
TPS is unimportant as only at most one transition is enabled
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Fig. 3 Composed hybrid automatonmodel of the closed-loop feedback control system for the buck converter. The buck converter plant is originally
modeled as a hybrid automaton, and the hysteresis controller is modeled as a timed automaton (see Fig. 11)

at a time, so it is in essence set arbitrarily to i based on what-
ever iteration order is chosen. Additionally, the restriction
on guards and invariants to ensure determinism means the
invariant translation is naturally handled through the transla-
tion of the guard as described above.

There are some additionalminor syntactic translations that
also must occur which we discuss briefly. The first is due
to the fact that updates in SlSf are evaluated sequentially,
whereas in a hybrid automaton they are evaluated concur-
rently, so additional temporary variables are introduced to
handle this as necessary (e.g., the hybrid automaton update
x ′ := x + 1 ∧ y′ := x is rewritten to the SlSf update
x ′
tmp := x; x ′ := xtmp + 1; y′ := xtmp, where xtmp is a
fresh temporary variable).

The second more significant difference is related to how
SlSf identifies events during execution or simulation, which
is influenced in part by the simulator not be infinitely precise
and have numerical errors. In particular, this influences event
detection such as when transitions are enabled and may be
taken, and this is implemented using zero-crossing detection
algorithms inside the simulation routines of SlSf.

In particular, if a guard is only enabled at one (singular)
point in time, it will almost surely not be detected by the
zero-crossing mechanisms used by SlSf, and the transition
is usually missed. In order to not exclude certain behaviors
systematically, we consider an ε-relaxation of each guard
constraint, similar to the relaxations considered in transla-
tions from SlSf to hybrid automata [30]. For instance, a
guard constraint of the form x = c ∧ y ≤ x becomes
c − ε ≤ x ≤ c + ε ∧ y ≤ x − ε. The simulation time
step can then be chosen small enough such that, based on
the value of ε and the Lipschitz constant of the dynamics, no
transitions will be missed.

Although this may permit more behaviors than the origi-
nal hybrid automaton, it critically prevents transitions from
being missed, which is necessary for trajectory equivalence.
The extra behaviors introduced from this necessary step can
be reduced by considering smaller values of ε, which will
require a smaller simulation time step. Reducing the time

step, however, will be at the cost of additional simulation
runtime.

Example translationWeillustrate the translationprocesswith
a running case study evaluated inmore detail later (Sect. 4.1).
A deterministic hybrid automaton for this example appears
in Fig. 3, which is a model of a closed-loop control system.
Specifically, here a periodically updated hysteresis controller
is used to regulate a voltage VC by controlling the state of a
switch. This is a flattened (composed) model of the closed-
loop system, originally consisting of a timed automaton
model of the hysteresis controller which has periodic updates
every 20 microseconds, and a hybrid automaton model with
affine dynamics of the plant, which is a circuit known as a
buck converter. The resulting continuous-time SlSf diagram
for the buck converter created using our translator appears in
Fig. 4 (with no ε-relaxations).

3.1.2 Translating a nondeterministic hybrid automaton

For a nondeterministic hybrid automaton, we achieve trajec-
tory equivalence by replacing nondeterminism in the hybrid
automaton by (uniformly distributed) random number gener-
ation in the SlSf diagram. In this way, by executing multiple
SlSf simulations we can approximate the reachable states of
the original hybrid automaton.

In our converter, we currently support initial regions and
nondeterministic updates to hyper-rectangles, as well as
deterministic updateswhich can be arbitrary functions.When
nondeterministic assignments or initial regions are used, they
must be strict subsets of the invariant of the target or ini-
tial location, respectively, which we note can be statically
checked. Under this assumption, the choice of the initial con-
tinuous state and the nondeterminismpossible during updates
can be done by randomly choosing one point from the set of
all points available.

In the rest of this section, we focus on the harder problem
of nondeterminism from the transitions and the dwell time.
We first give an overview of the translation scheme. Here
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Fig. 4 Composed SlSf diagram for the translated closed-loop feedback control system for the buck converter

choose
transition out

choose
threshold T

continuous
evolution

· · ·

transition
out not
possible

in [0, Tmax]

transition out not possible in [T , Tmax]

check t ≥ T
check gout
apply υout

Fig. 5 High-level location cluster translation pattern consisting of
three phases. The location cluster �̂ denotes a group of SlSf states
and junctions which reflects the behavior of the hybrid automaton in
the location �

it is helpful to regard the trajectory of a hybrid automaton
as a sequence of jumps, and after each jump, the automaton
chooses the next transition and dwell time. The crucial differ-
ence in our conversion is that the choices might be infeasible,
i.e., violating the invariant. To account for this, we incorpo-
rate a backtracking mechanism, where the current state of
all variables is stored when entering a new location. Note
that time is an entity which is implicitly present in all hybrid
automatonmodels and we can always add a (fresh) time vari-
able t with flow ṫ = 1. This allows for a general translation
scheme without further knowledge about the hybrid automa-
ton under consideration.

We translate a hybrid automaton location � into a cor-
responding location cluster �̂, comprising of a number of
SlSf states, junctions, and transitions. The clusters are then
connected by the same transitions as in the original hybrid
automaton. A simulation trajectory of the resulting SlSf dia-
gram then visits those clusters. Inside a cluster, the execution
consists of three phases, as depicted in Fig. 5.

Three phases in a location cluster In the first phase, we ran-
domly choose a transition out from the transitions currently
available. In the second phase, we choose a time threshold
T . In the final phase, we incorporate the original continuous
dynamics of the location �.

In the translated model, the transition tries to be taken by
checking the original guard condition, but only after dwelling
in �̂ for at least until timemoment T . If the transition out can-
not be taken—possibly due to an invariant violation—in the
time frame [T , Tmax], where Tmax is the maximum simu-
lation time, we backtrack1 and return to the second phase,
and select a new time threshold T which is strictly less than
the previously chosen threshold. To ensure termination, we
bound the number of times backtracking may occur before
trying T = 0. If the chosen transition can still not be taken,
we can conclude that it cannot be taken at all, and go back to
the first phase, this time trying another transition.

3.2 Trajectory equivalence

The translation process described above maintains the
definednotionof trajectory equivalence. For this,we consider
an idealized conversion, where there are no numerical errors
in the simulation, the value of ε is zero, and the SlSf diagram
encodes the intended semantics of the described transforma-
tion process.

Theorem 1 If H is a Zeno-free hybrid automaton and S is
the SlSf diagram created using our transformation process,
then S is trajectory-equivalent toH.

The proof for the more complex nondeterministic case is
given in Sect. 3.3.4. From the theorem, we can conclude that
our translation preserves safety properties.

Corollary 1 If a Zeno-free hybrid automaton H satisfies a
safety specification P, then every simulation trajectory of the
translated SlSf diagram S satisfies P.

1 We note that our notion of backtracking is different from the one
that occurs with multiple junctions in SlSf. In particular, we require
allowing some dwell time to elapse in states, whereas junctions are
instantaneous.
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in

entry: store variables(t,Var);
outList = permute(n);
Tv := Tmax;

jin

choose

entry: t,Var := restore variables();
T = chooseT(t, T , Tv, r, R);

jv

dwell

during: Flow( );

jt · · ·

...

· · ·

[ |outList | > 0 ]
{ T := Tmax;
out := pop(outList);

r := 0; }
[r = R]

[ |outList | = 0]
{ T := Tmax;

out := 0; }

[r < R]

[out > 0 ]
{Tv := t;

r++; }

[out = 0]
{ stop(); }[¬Inv( )]

[ t ≥ Tmax ]
{ stop(); }

1[t ≥ T ]

1

[out = 1]

[ g1 ]
{υ1}

[out = n] [ gn ]
{υn}

Fig. 6 General location cluster of some location � with n outgoing
transitions. (re-)store_variables stores and restores the cur-
rent simulation state (including the time variable t) from when entering
the cluster, respectively. permute(n) returns a permuted list outList

with all integers from 1 to n. pop(outList) removes and returns the first
element from outList. chooseT chooses a new time threshold T . A
subscript “1” indicates that a transition has the highest priority among
all the outgoing transitions from a state/junction

3.3 Additional translation details and proof

3.3.1 Detailed translator description

We provide a detailed description of our translation. It itera-
tively converts every location � of a hybrid automaton and its
outgoing transitions into an SlSf diagram of location clus-
ters �̂ in the following way (see Fig. 6). We first describe the
data structures we use in our construction. The list outList
stores the ordering in which the outgoing transitions of the
location � are considered in the simulation. The variable out
keeps track of the currently chosen outgoing transition. The
variable Tv stores the first time moment when the location
invariant is violated. Tmax keeps the maximum simulation
time, i.e., the simulation is stopped as soon as this bound has
been reached. The variable T stores the time threshold after
which the outgoing transition should be taken. The variable
R keeps the maximum number of backtrackings we want to
allow, whereas r stores the current number of backtrackings
in the location cluster �̂. Finally, the variable t stores the cur-
rent time that is simulated. Introducing this variable allows us
to model going back in time when backtracking, which is not
possible for the actual simulation time that is trackedbySlSf.

We continue with the description of every individual
(SlSf) state in our construction. The current simulation
time and the hybrid automaton state when entering the loca-
tion � (and, respectively, the location cluster �̂) is stored in
the (SlSf) state �in. Furthermore, the algorithm randomly
chooses the ordering in which the outgoing transitions are
considered. In this way we handle the nondeterminism due
tomultiple simultaneously enabled transition guards. Finally,
the variable Tv is initialized to Tmax as we do not have any
information about the invariant violation at that moment.

The state �choose covers two kinds of nondeterminism. It
takes care of the situation when the intersection of the invari-
ant and the transition guard is nonsingular, i.e., when a switch
to the next location can happen not only at a particular time
moment, but within a time interval. Note that if the con-
tinuous dynamics are nonmonotonic, there can be multiple
disjoint time intervals where the guard is enabled.We resolve
such situations by generating a random time threshold T in
the state �choose and allowing the discrete transition only from
the time moment T onward, i.e., we add a constraint of the
form t ≥ T as a part of the transition guard for every out-
going transition from the location �. Thus, we disable the
SlSf must-semantics up until time moment T to mimic the
original may-semantics of hybrid automata.

Note that we also use the state �choose for backtracking
purposes. We observe that an unfortunate choice of the out-
going transition out and the time threshold T can lead to
the simulation getting stuck, as the transition guard of out
is not enabled in the time frame [T , Tmax], and thus, the
transition cannot be taken. In such cases, we return to the
state �choose to select a further time threshold T . For this
purpose, we restore the simulation time t and the state of
the hybrid automaton from the moment we entered � resp.
�̂. Afterward, we can choose the next time threshold from
the interval [t, T ]. Here we observe that in general before
reaching the time threshold, the invariant can be violated.
Thus, we actually select a new threshold from the interval
[t,min(T , Tv)]. In this way, we end up with a sequence of
monotonically decreasing thresholds. Still, as it is not guar-
anteed that the chosen threshold is eventually equal to 0, we
add a further termination criterion by bounding the number
of backtracking by some user-defined constant R > 0. The
last time before exceeding this limit, we try out the weakest
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1

x < 10
ẋ = 2

2

x > 8
3

x ≤ 3

x [0, 3]
x ≥ 8
x := 2

x ≤ 4

Fig. 7 Snippet of an example hybrid automaton with three locations
�1 − �3

threshold T = 0 to ensure that we have covered all cases. If
the transition cannot be taken at all, we either proceed with
a further outgoing transition (junction jin) or, if none is left,
the simulation is stopped and reports an actual deadlock in
the model.

The continuous evolution corresponding to the location �

is modeled by the state �dwell. We can leave this state under
two conditions. First, the invariant can be violated. Then, we
store the time moment when the violation has happened in
the variable Tv and move to the state �choose (via junction
jv). Note that if we have already considered all the outgoing
transitions of �, we will stop the simulation since a deadlock
has been found. In the other case, the time threshold T can be
reached. We take the transition to the successor location of �

if the guard of the chosen transition out is enabled and after
applying the update, the target location’s invariant is satisfied
(junction jt). Furthermore, here we also check whether the
maximum simulation time Tmax has been reached, in which
case we stop the simulation.

In the following, we illustrate the translation process using
an example simulation.

3.3.2 Example

We consider an execution in some location cluster for a
simple location �1 with one continuous variable x and two
outgoing transitions, as depicted in Fig. 7. For simplicity,
assume that the location is entered at time t = 0 in state
x = 0 and the total simulation time is Tmax = 20.

First we store the current continuous state (t, x) = (0, 0).
Next, in phase 1, we choose a transition, say, the one to �2.
Then, in phase 2, we choose a random minimum dwell time
in the range [0, 20], say T = 3. The simulation proceeds in
phase 3 until an event occurs. In this case, events are either
violating the location invariant x < 10 or enabling the guard
condition of the selected transition t ≥ 3 ∧ x ≥ 8. The
guard condition is enabled first, at state (t, x) = (4, 8). This
transition cannot be taken, however, as the target invariant
would be violated after applying the update x := 2. The
simulation continues until the next event, when the state
(t, x) = (5, 10) is reached and a violation of the invari-
ant is detected. That is why the simulation goes back to
phase 2, backtracking to the saved state (t, x) = (0, 0). At
this point, it was checked that for all T ≥ 3, the transition
cannot be taken. In phase 2, a new value for T is chosen

from the restricted interval [0, 3), and the simulation is run
again in phase 3. After reaching the same conclusion and
after further backtracking, a finite threshold of attempts is
reached, and T = 0 is forced. Even with T = 0, there will
be a violation of the invariant before the transition can be
taken. Then, we will conclude that the selected transition
can never be taken when starting in the state (t, x) = (0, 0).
Thus, we can safely ignore this transition, go back to phase 1
and choose the transition leading to �3, where the process
repeats.

3.3.3 Translation correctness and discussion

Correctness The proof of Theorem 1 required three assump-
tions, mentioned before the theorem statement and proven
below. First, we assumed the simulations were exactly accu-
rate. Although real simulations will always have some error,
this can be reduced to arbitrarily small values by reduc-
ing the time step used in the simulation. Similarly, for the
second assumption we can consider smaller and smaller val-
ues of ε, although in degenerate cases this might permit
extra transitions in the simulation. For example, a degen-
erate guard like x < 5 ∧ x > 5 will always be false,
but any positive ε-relaxation will have a possible transition
when 5 − ε < x < 5 + ε. The third assumption is that
the SlSf diagram correctly encodes the described transfor-
mation process. This means that correctness is subject to
possible implementation bugs in our conversion implemen-
tation in HyST, as well as the semantics of SlSf. In addition
to the trajectory equivalence theorem, we provide empirical
justification for the correctness of the implementation of our
translation scheme, through extensive case studies including
the buck converter detailed in the main body, and additional
case studies presented later in appendix.

Nondeterminism When replacing nondeterminism with ran-
dom number generation, some behaviors of the original
hybrid automaton might be obscured. For instance, a non-
deterministic die can roll a six forever, while the probability
of this behavior for a random die approaches zero as more
rolls are taken. We always deal with finite executions in a
simulation and thus end up with a finite number of choices,
so there is still a nonzero chance that the “right” random val-
ues will be chosen, assuming that the hybrid automaton is
Zeno-free.

GeneralizationsAlthoughwe consider a large class of hybrid
automata, further generalizations are possible. For example,
the initial sets and nondeterministic resets in our framework
were hyper-rectangles, whereas in general, the initial state
could be in a nonconvex set, and the reset might be an arbi-
trary function which maps from a single state to a nonconvex
set. To handle such systems, we need a way to sample in the
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nonconvex destination sets, which may be possible in certain
situations, but is difficult in general. One possibility would
be to require the user to give this sampling function.

Another possible generalization is to consider nonde-
terministic dynamics. More general hybrid automata may
include differential inclusions or other nondeterministic
ways for the continuous states to evolve. This could be han-
dled by adding ranged inputs to the system, and at each
time step choosing a random value in the range for each
input. However, as the time steps become smaller, the ran-
dom inputs will approximate the main value in their ranges,
which in practice results in poor simulation coverage. An
alternative is to choose a time step where the inputs will
vary, such that a trade-off is possible between the amount
of coverage possible and the effect of this tendency toward
the mean. Other simulation methods, perhaps based on state
exploration mechanisms such as rapidly exploring random
trees (RRTs) [28], may also be possible.

3.3.4 Proof

Proof (Theorem 1) We first show the forward direction, i.e.,
given an arbitrary trajectory of the hybrid automaton, there
exists a set of random decisions in the constructed SlSf dia-
gram that produce a corresponding simulation trajectory.

Recall that correspondence (Definition 5) requires that the
encountered locations can be the same and that the deviation
in continuous states can be bounded by an arbitrarily small
constant.

For the ordering of locations, notice that the random
choice of an outgoing transition in phase 1 of the construc-
tion can pick the corresponding transition from the trajectory.
Since the minimum dwell time is chosen randomly, it can be
picked to be arbitrarily close to the dwell time in the hybrid
automaton trajectory. In this way, as long as the continu-
ous evolution in the simulation remains close to the hybrid
automaton trajectory’s continuous evolution, every transition
will be explored.

The second part of correspondence requires that the devi-
ation in the continuous states is bounded. We show that this
bound can be chosen to be arbitrarily small across both every
continuous evolution and after every discrete transition. Dur-
ing a continuous evolution, if the start state in a location in
the simulation is chosen close to the start state in the cor-
responding location in the hybrid automaton trajectory, its
deviation will also be bounded as a function of the Lips-
chitz constant (see Proposition 1 in [19]). Thus, for a single
bounded continuous evolution and every nonzero final state
deviation desired, there is a corresponding nonzero initial
state deviation that will achieve the desired closeness.

During initial state selection, since we consider hyper-
rectangles, the set of states is bounded. By randomly choos-

ing states, we will, in finite time, pick a state arbitrarily close
to any trajectory’s start state in the hybrid automaton.

Finally, for updates, the dwell time of a simulation can be
made arbitrarily close to a hybrid automaton trajectory, and
since the state can be made arbitrarily close, a deterministic
update function (under assumptions of Lipschitz continuity)
can also result in a state arbitrarily close to the trajectory.
For nondeterministic updates, the argument is similar to the
initial state selection, and thus, the continuous states of the
simulation remain arbitrarily close to the hybrid automaton
trajectory.

The sequence of discrete transitions between the trajec-
tory and simulation match. Since each trajectory is a finite
sequence of discrete transitions (due to Zeno-free behavior)
and continuous evolutions (each ofwhich can have arbitrarily
small error between the trajectory and a possible simulation),
the accumulated error for the whole trajectory can also be
made arbitrarily small. Thus, the constructed SlSf diagram
has simulations which correspond to any arbitrary hybrid
automaton trajectory.

The reverse direction in the proof shows that any arbitrary
simulation has a corresponding hybrid automaton trajectory.
Again, we proceed by decomposing this into showing that
the sequence of locations is the same, and that the deviation
in the continuous state is bounded.

Since we assumed an idealized relaxation where ε is zero,
every transition in the simulation exactly matches the guard
conditions in the hybrid automaton, and thus, the hybrid
automaton can match the simulation. Every update in the
constructed SlSf diagram is also copied from the automa-
ton, so that the automaton’s trajectory can match the random
choices made by a simulation.

For continuous trajectories, the simulation will choose
some dwell time where the invariant remains satisfied until
a guard becomes true. The hybrid automaton can also pick
the same dwell time, and its invariant will also remain true
until the same guard condition is reached. Thus, the hybrid
automaton can pick a trajectory which corresponds to the
simulation.

Since every trajectory of the hybrid automaton corre-
sponds to a simulation trajectory of the SlSf diagram, and
every simulation trajectory corresponds to a trajectory, the
two models are trajectory-equivalent. ��

4 Evaluation and experimental results

To evaluate the translation methodology presented in this
paper, we implemented a prototype translator that uses the
HyST intermediate representation for source-to-source trans-
formation of hybrid automata [5], and the SlSf API within
MATLAB (tested with versions 2014a through 2016a). The
input to the translator is a hybrid automaton H in the
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SpaceEx XML format. Networks of hybrid automata are
first composed within HyST to yield a single hybrid automa-
ton representing the network. Once parsed in the tool, an
object representing the syntactic structure of H is traversed,
and then, the tool applies the sequence of translation steps
described in Sect. 3. In the simulator, we varied the seeds
of the uniform pseudo-random number generator rng in
MATLAB. We evaluated the prototype tool using several
examples. For this, we first computed the reachable states
of the models in SpaceEx or Flow∗ and then performed the
translation and simulations in SlSf. The tool and examples
are available for download [24].

4.1 Case study: buck converter with periodic hysteresis
controller

A buck converter is a DC-to-DC switched-mode power sup-
ply that takes aDC input source voltage and lowers (“bucks”)
it to a smaller DC output voltage [32]. A standard model of
the converter has three modes, where the switch is closed and
the voltage source is connected, where the switch is open and
the voltage source is disconnected, and based on the possible
dynamics of the converter, a third mode, known as the dis-
continuous conductionmode (DCM),where the current is not
allowed to go below zero (which is physically unrealizable,
but may occur without this third mode). Interested readers
may find detailed derivations of models in power electronics
textbooks [41]. A hybrid automatonmodel of the closed-loop
buck converter (plant and timed controller) appears in Fig. 3.

A standard closed-loop controller for the buck converter
is a hysteresis controller, which changes the mode of the
buck converter plant based on the measured output voltage.
Its operation depends on opening and closing the MOS-
FET switch. Intuitively, it operates like a thermostat, i.e.,
the switch is toggled so that the source voltage is connected
to the circuit if the output voltage is too low, and it is tog-
gled in case if the output voltage is too high to disconnect
the voltage source. We note that by Kirchhoff’s voltage law
(KVL), VC = Vout [41]. In part to avoid switching too fre-
quently, a hysteresis band is typically used so switches occur
when Vout ≥ Vref + Vtol or Vout ≤ Vref − Vtol. This cre-
ates a voltage ripple on the output voltage that should be
within a given range Vrip of the desired reference output
voltage Vref . Together, these define a safety specification:

P(t)
Δ= t ≥ ts ⇒ Vout(t) = Vref ± Vrip, which pro-

jected onto the phase space is P
Δ= Vref − Vrip ≤ Vout ≤

Vref + Vrip. SpaceEx is used to verify P by computing the
reachable states Reach(H) (to a fixed-point) from a startup
state where the initial states Sinit are iL = 0 and VC = 0.
For every time t ≥ ts after a startup trajectory of duration
ts , if Vref − Vrip ≤ Vout(t) ≤ Vref + Vrip, then the converter
satisfies the specification P .

Fig. 8 Reachable states of the hybrid automaton computed with
SpaceEx, verifying the voltage-regulation property, along with HiL
simulation results of the translated SlSf diagram on the DS1103 (“vir-
tual plant”), and control of the physical plant with the translated SlSf
diagram (“actual plant”). Our results validate the high-level vision of
correct-by-construction control implementation from Fig. 1

For actual implementations, the measured voltage values
are sensed periodically through an analog-to-digital con-
verter (ADC), and subsequently, the control signals are sent
periodically to control the state of the buck converter tran-
sistor (open/closed). We model this periodic update process
as a timed automaton for the controller with a timer variable
td that evolves at unit rate and is upper bounded by T of 20
microseconds. The reachable states of the closed-loop buck
converter hybrid automaton are computedwith SpaceEx, and
as shown in Fig. 8, the model satisfies the safety specification
P for a sufficient choice of Vrip.

A hardware setup consisting of a buck converter plant, and
a dSpaceDS1103 is used to perform the experiments with the
physical buck converter plant. The DS1103 contains a Power
PCprocessor and aDSPboard and is used for implementation
of the hybrid automata in both hardware-in-the-loop (HiL)
simulations with a “virtual plant” (the plant model simulated
on theDS1103 hardware) and the actual buck converter plant.

The hysteresis controller is executed on theDS1103. First,
we generate C code using the translated SlSf diagram in
MATLAB, then compile it and download it onto the DS1103.
A discrete fixed-step solver with a time step of 20 microsec-
onds is used for the code generation process and also for
the DS1103’s sampling and control periods, which is suffi-
ciently small to ensure ε is sufficiently small, as discussed
in Section 3. The measured voltage signal from the buck
converter is periodically sensed and sent to the embedded
controller through an ADC. The embedded controller gen-
erates Boolean valued signals, and these are converted to
suitably spaced rectangular pulses to operate the MOSFET
switch of the buck converter plant. For the experiments with
the actual plant, the input signals fed to the controller (specif-
ically the VC voltage) are replaced from the simulationmodel
with the measurement of the actual plant, and the output
signals (the desired mode, open or closed) are fed to the
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Component / Parameter Name Symbol Value

Source Input Voltage VS 24 V

Desired Output (Reference) Voltage Vref 12 V

Actual Output Voltage VC = Vout 12 V ± Vrip

Hysteresis Band Tolerance Vtol 0.1 V

Voltage Ripple Tolerance Vrip 0.6 V

Load Resistance with Parameter Variation R 10 ± 2% Ω

Capacitor Value with Parameter Variation C 2.2 ± 2% mF

Inductor Value with Parameter Variation L 2.65 ± 2% mH

Periodic Updation Parameter T 20 μ sec

(b)

Fig. 9 a Buck converter circuit—a DC input VS is decreased to a lower DC output VC = Vo = Vout . b Buck converter parameter values and
variations

Fig. 10 Buck converter plant controlled with a dSPACE DS1103 sys-
tem.Our results controlling the actual plantwith the translated controller
validate the high-level vision of correct-by-construction control imple-
mentation from Fig. 1

actual plant instead of the simulation model. The experimen-
tal results are recorded, and a comparison toSlSf simulations
is shown in Fig. 8. The experimental and simulation traces
are contained in the SpaceEx reach sets, which validates the
translation correctness (Theorem 1) and that the safety prop-
erty is maintained in the implementation (Corollary 1). Note
that in the hardware experiments, the controller has essen-
tially beendeterminized, as the purpose of nondeterminism in
the hybrid automatonmodel was tomodel plant inaccuracies.

4.1.1 Additional details

The buck converter circuit appears in Fig. 9a. Parameter val-
ues used for the case study appear in Fig. 9b.

A hybrid automata network model of the buck converter
plant and a timed automaton of the hysteresis controller
appears in Fig. 11, where θ is a synchronization label and
δ is a discrete control signal, and a bisimilar hybrid automa-
ton model after flattening (composing) the network is shown
earlier in Fig. 3. The composed model from Fig. 3 is used

for verification, translation, and code generation purposes as
discussed earlier, while the network model is conceptually
simpler and illustrates the decomposition between the physi-
cal plant hardware and the controller. The physical hardware
used in the evaluation appears in Fig. 10.

Figure 12 (resp. Fig. 13) shows the reachable states
together with a number of simulations. The plots illustrate
that theSlSf simulations are contained in the reachable states
computed with SpaceEx and give empirical evidence for the
correctness of the translation.

4.2 Case study: yaw damper controller for 747 aircraft

Ayawdamper ismodeled as amultiple-inputmultiple-output
(MIMO) system which uses the aileron and rudder in order
to reduce oscillations in the yaw and roll angle of an aircraft.
In this section, we use the proposed method to analyze the
control design of a yaw damper for a 747 aircraft, taken from
the Control Systems Toolbox case studies in MATLAB.

In particular, we analyze the final designed controller,
which includes a washout filter capable of eliminating oscil-
lations, but maintaining the spiral mode. The spiral mode is a
desired control characteristic in yaw damper systems, where
an impulse input from the aileron will result in a bank angle
which does not immediately decrease to zero.

The model for the system is given at Mach 0.8 at 40,000 ft
using standard linear time-invariant dynamics, ẋ = Ax +
Bu. There are four physical variables in the system x =
(x1, x2, x3, x4)T , which are sideslip angle (x1), yaw rate (x2),
roll rate (x3), and bank angle (x4), represented by the column
vector x . The two inputs u = (u1, u2)T are the rudder (u1)
and aileron (u2). The outputs are the yaw rate and bank angle.

The specific values for A and B are:

A =

⎡

⎢
⎢
⎣

−0.0558 −.9968 0.0802 0.0415
0.598 −0.115 −0.0318 0
−3.05 0.388 −0.4650 0
0 0.0805 1 0

⎤

⎥
⎥
⎦ ,
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Fig. 11 Hybrid automaton model of the buck converter plant with timed automaton of the hysteresis controller as a network

Fig. 12 LeftBuck converterVC versus time,with SpaceEx reach set for
the hybrid automatonmodel in red, and black points from 10 simulation
traces of the translated SlSf diagram. Right Detailed and zoomed view
illustrating multiple simulation trajectories (color figure online)

B =

⎡

⎢
⎢
⎣

.00729 0
−0.475 0.00775
0.153 0.143
0 0

⎤

⎥
⎥
⎦

This physical system is put into a feedback loop with a
washout filter, which has a single variable w and dynamics
ẇ = x2 − 0.2 · w. The filter variable is combined with the
yaw to produce an effect on the rudder input. In particular,
the washout filter adds to u1 the value 2.34 · (x2 − 0.2 · w).

We consider analysis of a system model which has the
guarantees given by a real-time scheduler, which periodi-
cally executes the washout filter and sets the output values.
Between controller executions, we take the output of the
washout filter to be constant (zero-order hold). The control
task is guaranteed to execute every period using a common
scheduler like Rate Monotonic (RM) or Earliest Deadline
First (EDF). There is nondeterminism in the exact time the

Fig. 13 LeftBuck converter VC versus iL (phase space), with SpaceEx
reach set in red, and black points from 100 simulation traces. Right
Detailed and zoomed view illustrating multiple simulation trajectories
(color figure online)

controller runs, however, due to the offset of the execution of
the control task within each period. Since the control logic
is simple, we take the control task to be nonpreemptive and
short, so that the model will sample the physical system and
update the filter output at a single point in time, but that point
in timemay vary within each period. Furthermore, we look at
the system response due to an impulse input from the aileron
from a range of start conditions. We take the initial bank
angle to be between 0 and 0.1.

This system was modeled in SpaceEx, and reachability
analysis was attempted in both SpaceEx and Flow∗. Due to
the large number of discrete switches, however, neither tool
is able to directly compute reachability (the computed reach
sets grow exponentially).

Instead, we investigate the system using our conversion
to SlSf and randomized execution. Since the main source
of nondeterminism in this model is the discrete switches, we
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can investigate simulations of the system where they occur
at varying offsets from the start of each period.

The simulations showed the expected response of the sys-
temwhen using a controller period of T = 0.1. The response
of the system is shown in Fig. 14. Here, the impulse response
from the aileron to the bank angle is plotted, which does not
immediately converge (spiral mode), and does not contain
excessive oscillations. Thus, using the technique proposed
in this paper we are able to analyze a system which cannot
be directly analyzed using reachability tools.

This system can be analyzed formally; however, this
requires a nontrivial model transformation using the tech-
nique of continuization, as well as using a smaller control
period. Continuization converts the periodically actuated
model into a continuous one with bounded noise, where the
bound is based on the controller period and maximum rate
of change of the output signal [6]. The same model can be

Fig. 14 Fifty simulations of the yaw damper system. Top The spiral
mode is confirmed. Bottom Nondeterminism in controller execution
time causes simulated trajectories to cross

used as the basis for the conversion using continuization, as
well as the conversion to SlSf for simulation and further
MATLAB-based analysis and code generation. In this way,
the conversion to SlSf is one part of a larger toolflow, where
models are first created in SpaceEx, possibly converted for
formal analysis usingHySTand then canbedirectly imported
into SlSf after the conversion described in this paper for sim-
ulation and controller synthesis, as well as embedding in a
larger CPS model.

4.3 Case study: glycemic control in diabetics

Glycemic control is an approach to control the blood glu-
cose levels in insulin-dependent diabetes mellitus patients.
There are several different mathematical models of glycemic
control used to design insulin infusion devices that help dia-
betic patients control their blood glucose levels [20]. Herewe
investigate a nonlinear hybrid system of the glycemic con-
trol in diabetic patients such that all dynamics are defined by
polynomials. The mathematical model is described by the
following ODEs:

Ġ = −0.01G − X(G + GB) + g(t) (1)

Ẋ = −0.025X + 0.000013I (2)

İ = −0.093(I + IB) + u(t)/12 (3)

In Eqs. 1 and 3,G and I are the plasma glucose concentration
and the plasma insulin concentration above their basal value
GB and IB, which are equal to 4.5 and 15, respectively. The
variable X shown in Eq. 2 is the insulin concentration in an
interstitial chamber. Moreover, g(t) and u(t) are the influx
of glucose and the insulin control input, presented in Eqs. 4
and 5, respectively.

g(t) =
⎧
⎨

⎩

t/60 if t ≤ 30
(120 − t)/180 if 30 < t ≤ 120
0 if t > 120

(4)

u(t) =
⎧
⎨

⎩

25/3 if G(t) ≤ 4
25/3(G(t) − 3) if 4 < G(t) ≤ 8
125/3 if G(t) > 8

(5)

The glycemic control was first modeled in SpaceEx and then
translated to Flow∗ by using the HySTmodel converter. This
model is nonlinear, nondeterministic, and includes four vari-
ables, nine locations, and 18 discrete transitions in total. The
simulations of the glycemic control model translated to SlSf
are shown in Fig. 15.We simulated the translated model with
100 different randomized executions. All simulation traces
ofG are contained in the reach set computed by Flow∗, which
validates the translation.
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Fig. 15 One hundred simulations of the glycemic control model with
simulations and reach set computed by Flow∗ (gray) for variable G

4.4 Case study: Fischer mutual exclusion

Fischer mutual exclusion is a timed distributed algorithm
that ensures a mutual exclusion safety property, namely that
at most one process in a network of N processes may enter
a critical section simultaneously. An automaton for Fischer
appears in Fig. 16. Fischer involves two real timing parame-
ters, A and B, and mutual exclusion is ensured iff A < B.

Let Loc
Δ= {rem, try,waits, cs}. We translated a network

of two automata (N = 2) from SpaceEx to SlSf. In one
instance, we ensured A < B by picking A = 5 and B = 70,
so mutual exclusion was maintained, which we verified in
SpaceEx using the PHAVer scenario. In the other instance,
we ensured A > B by picking A = 75 and B = 70,
and mutual exclusion was not maintained. Consequently, we
could not verify this instance using SpaceEx’s PHAVer sce-
nario since a location cs ∼ cs was reachable, corresponding
to the case where both processes are in the critical section.
We conducted K = 1000 simulations with maximum time
T = 1000s of the translated SlSf model in each case. In
Fig. 17, we show, respectively, the property satisfaction and
violation through the automatic translation from SpaceEx to
SlSf by plotting the corresponding locations versus time,
where different colors correspond to different simulations.
In the safe case (A < B), all the locations reached via simu-
lations did maintain the mutual exclusion property and were

rem
ẋi = 1start

try
ẋi = 1
xi ≤ A

waits
ẋi = 1

cs
ẋi = 1

g =
xi := 0

g := i; xi := 0
g = i xi ≥ B

xi := 0

g = i xi ≥ B
xi := 0

g :=

Fig. 16 Fischer’s mutual exclusion algorithm for a process with iden-
tifier i ∈ {1, . . . , N }. Here, g is a global variable of type {⊥, 1, . . . , N },
xi is a local variable of type R, and both A and B are constants of type
R

Fig. 17 Locations reached for 1000 SlSf simulations of Fischer,
where different colors indicate different trajectories. Top safe case. Bot-
tom unsafe case

Loc2 \ {cs ∼ cs, try ∼ cs, cs ∼ try}. In the unsafe case
(A > B), the locations reached via simulation included every
location (e.g., all 16 locations of the permutations of LocN

for N = 2) and violated themutual exclusion property. These
results give further empirical evidence for the correctness of
the translation procedure.

4.5 Additional case studies

Table 1 summarizes the different types of benchmarks that
were all successfully translated and checked for trajectory
equivalence in addition to the previously presented case stud-
ies. The experiments were performed on an Intel I5 2.4GHz
machine with 8GB RAM. All benchmarks are available in
supplementary material [24].
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Table 1 Overview of the
benchmark problems
successfully translated to SlSf
by using the method in this
paper

No. Name Type |Var| |Loc| |Trans| tc ts

1 biology_1 NLC 7 1 0 8.894 20.912

2 biology_2 NLC 9 1 0 7.892 12.939

3 bouncing_ball LC 2 1 1 8.149 11.960

4 brusselator NLC 2 1 0 7.428 10.650

5 buckling_column NLC 2 1 0 7.738 11.056

6 coupledVanderPol NLC 4 1 0 8.202 11.746

7 E5 NLC 5 1 0 8.230 36.635

8 fischer_N2_flat_safe LH 6 16 82 20.158 54.145

9 fischer_N2_flat_unsafe LH 6 16 82 19.287 59.627

10 glycemic_control_1 NLH 5 3 4 8.319 15.385

11 glycemic_control_2 NLH 5 3 4 8.301 15.567

12 glycemic_control_poly1 NLH 4 9 18 10.528 23.938

13 glycemic_control_poly2 NLH 4 6 10 9.237 19.341

14 helicopter LC 28 1 0 10.096 14.897

15 Hires NLC 9 1 0 7.912 9.001

16 jet_engine NLC 2 1 0 7.667 11.816

17 lac_operon NLC 2 1 0 7.586 13.257

18 lorentz NLC 3 1 0 7.739 11.253

19 lotka_volterra NLC 2 1 0 7.740 11.025

20 circuits_n2 NLH 3 3 2 9.39 13.895

21 circuits_n4 NLH 5 3 2 8.506 14.202

22 circuits_n6 NLH 7 3 2 8.585 15.113

23 circuits_n8 NLH 9 3 2 8.624 15.386

24 circuits_n10 NLH 11 3 2 8.752 15.813

25 circuits_n12 NLH 13 3 2 9.604 19.837

26 OREGO NLC 4 1 0 9.157 11.111

27 randgen LH 3 3 6 9.056 15.112

28 Rober NLC 4 1 0 8.266 16.999

29 roessler NLC 3 1 0 9.144 12.771

30 small_circuit NLC 5 1 0 10.265 13.660

31 spiking_neuron NLH 2 2 2 8.703 13.559

32 spring_pendulum NC 4 1 0 9.861 6.251

33 vanderpol NLC 2 1 0 8.119 12.226

Column Type presents different classes of dynamics, where LC, NLC, LH, and NLH are abbreviations for
linear continuous, nonlinear continuous, linear hybrid, and nonlinear hybrid, respectively. Columns |Var|,
|Loc|, and |Trans| show the number of variables, locations, and transitions, respectively, while tc and ts show,
respectively, the time our tool required to translate the model, and the time to simulate the translated SlSf
diagram twice

5 Conclusion

We have presented a trajectory-equivalent transformation of
a hybrid automaton into a continuous-time SlSf diagram and
described its implementation in a prototype software tool. For
nondeterministic models, our approach adds auxiliary ran-
domization for various sources of nondeterminism to mimic
the semantics of hybrid automata. We have empirically vali-
dated our approach on a number of challenging benchmarks.
To account for zero-crossing issues in the simulation engine,

our translation is parameterized by an ε-relaxation; for ε = 0,
we obtain an under-approximation of the hybrid automaton
trajectories (which is precise assuming a perfect simulation
engine), while for ε > 0 we obtain an over-approximation.

For the future, it will be interesting to further refine and
extend our approach by, for example, considering the trans-
lation of networks of hybrid automata—directly without first
composing them—into SlSf diagrams and exploring further
sources of nondeterminism such as nondeterministic flows.
Another direction would be to make the distribution over all
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possible executions uniform. A focus on rare events in the
line of [17] and evaluating the SlSf diagrams using tools
integrated with SlSf such as S-TaLiRo [4] or Breach [18]
would also be useful.
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