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ABSTRACT
Algorithmically analyzing hybrid systems models is chal-
lenging in theory and in practice. Numerous sound (and
sometimes complete) transformations for simplifying the anal-
ysis of hybrid systems models have been developed, and are
used to show both theoretical results such as reductions to
finite-state automata for certain classes and practical results
to ease reachability analysis. HyST is a software frame-
work for implementing transformation passes for hybrid au-
tomata, and supports various transformation passes, includ-
ing hybridization (which simplifies continuous dynamics),
continuization (which simplifies discrete dynamics), pseudo-
invariants (which adds auxiliary invariants that do not change
the reachable states, but ease reachability analysis compu-
tations), order-reduction (which reduces the number of state
variables [dimensionality]), among others. This demonstra-
tion will illustrate these transformations in HyST on canoni-
cal hybrid systems examples, and show analysis results with
a number of state-of-the-art hybrid systems verification tools
such as SpaceEx, Flow*, dReach, and HyComp.

1. INTRODUCTION
A hybrid automaton [1] is an expressive mathematical model
useful for describing complex dynamic processes involving
both continuous and discrete states and their evolution. Soft-
ware tools for algorithmically analyzing various classes of
hybrid automata have been developed, and recent tools in-
clude SpaceEx for affine dynamics [6–8, 11], Flow* for non-
linear dynamics [9], dReach for nonlinear dynamics [12], and
HyComp [10] for polynomial dynamics. HyST is a source
transformation and translation tool for hybrid automaton
models [4]. HyST supports source-to-source model trans-
formation passes in an intermediate representation, which is
represented as networks of hybrid automata. The input to
HyST is a network of hybrid automata in the SpaceEx for-
mat, and the output is a new network of hybrid automata in
the various input formats supported by different tools (cur-
rently SpaceEx, Flow*, dReach, and HyComp). In addi-
tion to syntactic conversions, several recent transformation
passes in HyST are useful for simplifying analyses, and its
architecture makes these transformations applicable across
numerous tools. Compared to the original version presented
as a tool paper [4], HyST now includes support for addi-
tional model transformation passes, networks of hybrid au-
tomata, and additional output formats (HyComp). This
demonstration will illustrate HyST’s usage to interface tools
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Figure 1: HyST overview: a network of hybrid automata in
the SpaceEx format N is parsed into the intermediate rep-
resentation, on to which model transformation passes αi are
applied. Various syntactic transformations are also applied
before exporting to the supported tools.

and the recent transformation passes.

2. DEMONSTRATING TRANSFORMATION
PASSES WITH HYST

This demonstration of HyST will illustrate its currently
supported use cases, with a particular focus on the recently
added transformation passes.1 We note that all of the model
transformations are sound or overapproximative, in the sense
that the resulting transformed automaton’s reachable states
contain those of the original automaton. Figure 1 shows
the high-level architecture of HyST. The demonstration will
consist of showing how to apply passes to hybrid automata,
modify examples, and use scripts to automatically execute
the supported tools.

2.1 Hybridization
HyST implements a hybridization source-to-source trans-
formation, which creates a simpler hybrid automaton from
a more complex one, for example, by overapproximating
nonlinear differential equations as linear differential inclu-
sions [3]. Most modern hybridization techniques rely on
dynamic (or on-the-fly) hybridization which helps to avoid
the costly partitioning of the state-space as convex cells,
which if done statically by creating a new hybrid automa-
ton to analyze frequently leads to an exponential blow-up in
the dimensionality of the system. However, HyST’s source-
to-source (i.e., static) hybridization methods exploit bene-
fits of dynamic hybridization methods by guiding the static
partitioning through offline simulations, and additionally us-
ing time-triggered transitions in addition to state-dependent
transitions between partitions of the state-space [3].2

1HyST is available online: http://verivital.com/hyst/
2http://verivital.com/hyst/pass-hybridization/
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2.2 Continuization
A challenge in analyzing hybrid automata with time-dependent
switching is that frequently occurring transitions can cause
a blow-up in the number of intersection operations needed,
which may lead to a blow-up in the overapproximation error
for such systems. For some classes of periodically-switched
hybrid automata that are reasonable models of popular real-
time schedulers (such as rate monotonic scheduling [RMS]
and earliest-deadline first [EDF]), HyST implements con-
tinuization to avoid these explosions of numbers of tran-
sitions and intersection operations [5]. Somewhat as the
converse of hybridization, which may take a purely continu-
ous nonlinear system and from it create a hybrid automaton
with simpler (e.g., linear) dynamics, continuization takes a
hybrid automaton and overapproximates its behavior with a
purely continuous system by overapproximating the switch-
ing behavior as nondeterministic additive terms.

2.3 Pseudo-Invariants
The pseudo-invariants transformation passes introduces aux-
iliary invariants in modes of the hybrid automaton, such that
these pseudo-invariants do not change the set of reachable
states after the transformation. While the reachable states
do not change, the reason for adding such pseudo-invariants
is for reducing overapproximation error in the reachability
algorithms, which often can exploit such additional invari-
ants to reduce the set of computed reachable states [2].

2.4 Order-Reduction
Order-reduction is a common approach in systems and con-
trol to simplifying analysis of systems, and roughly creates a
reduced-order system with fewer state variables (decreased
dimensionality) such that the reduced-order system has be-
haviors similar to those of the original, or full-order, sys-
tem [17]. To be used as a sound abstraction for verification,
key arguments must be made with respect to the similarity
of behaviors between the original and reduced-order system,
and approaches relying on approximate bisimulation rela-
tions [13] and deriving error bounds from numerical simu-
lations [14] have been explored. HyST implements order-
reduction methods for linear systems based on balanced-
truncation, which have allowed us to verify safety of systems
with up to a thousand state variables (dimensions) [17]. The
implementation of these order-reduction methods relies on
a bridge between HyST and Matlab, and allows us to use
built-in order-reduction methods in Matlab, as well as derive
error bound overapproximations.3

3. BENCHMARKS
HyST has been evaluated and comes with a wide range of
benchmarks of various classes of hybrid automata, includ-
ing: timed automata, rectangular hybrid automata, hybrid
automata with linear/affine differential equations, and non-
linear hybrid automata. Several benchmark packages in part
leveraging HyST have been released, and all the models are
in the SpaceEx XML format. The benchmarks released in-
clude: DC-to-DC power electronics converters [15], nonlin-
ear systems frequently used as benchmarks in the numerical
analysis community [16], and larger-scale linear systems fre-
quently used in controls and order-reduction [17].

3http://verivital.com/hyst/pass-order-reduction/

4. CONCLUSION
Overall, this demonstration will illustrate the current fea-
tures in HyST, from model transformation passes to in-
tegration with state-of-the-art hybrid systems verification
tools. In the future, we hope to continue to engage with the
community and integrate additional tools and new transfor-
mation passes within HyST.
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