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Abstract. Continuous-time Markov chain (CTMC) models have be-
come a central tool for understanding the dynamics of complex reaction
networks and the importance of stochasticity in the underlying biochem-
ical processes. When such models are employed to answer questions in
applications, in order to ensure that the model provides a sufficiently
accurate representation of the real system, it is of vital importance that
the model parameters are inferred from real measured data. This, how-
ever, is often a formidable task and all of the existing methods fail in
one case or the other, usually because the underlying CTMC model is
high-dimensional and computationally difficult to analyze. The param-
eter inference methods that tend to scale best in the dimension of the
CTMC are based on so-called moment closure approximations. However,
there exists a large number of different moment closure approximations
and it is typically hard to say a priori which of the approximations is the
most suitable for the inference procedure. Here, we propose a moment-
based parameter inference method that automatically chooses the most
appropriate moment closure method. Accordingly, contrary to existing
methods, the user is not required to be experienced in moment closure
techniques. In addition to that, our method adaptively changes the ap-
proximation during the parameter inference to ensure that always the
best approximation is used, even in cases where different approximations
are best in different regions of the parameter space.

Keywords: Stochastic reaction networks, continuous-time Markov chains, pa-
rameter inference, moment closure

Acknowledgements. This work was partly supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS3), by the Euro-
pean Research Council (ERC) under grant 267989 (QUAREM) and by the Austrian
Science Fund (FWF) under grants S11402-N23 (RiSE) and Z211-N23 (Wittgenstein
Award). J.R. acknowledges support from the People Programme (Marie Curie Actions)
of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA
grant agreement no. 291734.

3 http://www.avacs.org/

http://www.avacs.org/


1 Introduction

With the advancement of measurement technologies for biochemical processes in the
last decades, quantitative mathematical modeling of biochemical reaction networks has
continuously increased in importance [1,14,19]. Chemical reactions inside cells, where
some of the reacting species may be present in very low amounts of molecules, are
inherently driven by random fluctuations [6,12,20]. Accordingly, an accurate mathe-
matical model should take this stochasticity into account. The most widely used class
of stochastic models in this context are continuous-time Markov chains (CTMCs) [5].
The advantage of these models is that they are easy to formulate and can be justified
based on first principles [4]. The major drawback is that their analytical or computa-
tional analysis can be extremely difficult, especially when more than just a few different
chemical species play a role for the reaction network. This is because the chemical mas-
ter equation (CME), which governs the time evolution of the probability distribution of
the CTMC, cannot be solved for anything but the simplest systems and even approx-
imation techniques [13,23] tend to fail when the CTMC is high-dimensional. In such
cases, an alternative is to focus only on some low-order moments of the probability
distribution. Ordinary differential equations that describe the time evolution of these
moments can be derived from the CME [2], but their solution typically requires some
kind of approximation [18,21]. These approximations, known as moment closure, are
usually based on an assumption of the underlying probability distribution and exist
in many different varieties [8]. Often, for a given system and given model parameters,
some of these approximations provide good results whereas others fail to be sufficiently
accurate or fail entirely. Unfortunately, there exists no approach for determining a pri-
ori which moment closure technique will provide the best approximation. In general,
the only approach that is guaranteed to provide at least statistically exact results is
to simply simulate the CTMC using a stochastic simulation algorithm (SSA) [3] and
to compute Monte Carlo estimates of the system output of interest based on the sim-
ulation results. To obtain precise estimates, however, a large number of simulations
may be required, leading to a high computational cost. For the forward analysis of a
system, i.e. when the model parameters are known, this is not a serious problem. For
the reverse engineering task of identifying the model parameters from measured data,
however, the CTMC needs to be analyzed for many different parameter values in order
to determine those in best agreement with the measured data. Accordingly, for this
task the computational cost of approaches based on stochastic simulation [10] is often
prohibitively large.
In this paper, we propose an approach for parameter inference based on moment clo-
sure that is complemented by stochastic simulation. In particular, the parameter infer-
ence is performed based on the computationally cheap moment closure approximation,
whereas the stochastic simulation is employed whenever new regions in the parameter
space are explored, either to ensure that the approximation is still sufficiently accurate,
or to propose a new approximation that outperforms the previously used one. With
this approach we are able to combine the computational advantages of moment closure
with the statistical exactness of SSA and obtain a method that is both scalable and
does not require a priori knowledge of the performance of different moment closure
techniques. Importantly, the method is completely automated and chooses and adapts
the approximation from a precomputed library of moment closure methods. Thus, the
user only has to specify the model and supply the data and, contrary to previous
approaches [9,16,24], no expertise in the analysis of CTMCs is required.



The remaining paper is structured as follows. In Section 2, we introduce biochemical
reaction networks, the chemical master equation and moment closure methods. In Sec-
tion 3, we formulate a maximum-likelihood estimation problem for the model parame-
ters and describe previously published moment-based methods for solving these prob-
lems. In Section 4, we propose our automated adaptive parameter inference method.
In Section 5, we study the performance of our method for some benchmark reaction
networks. Finally, in Section 6, we discuss our results and provide some concluding
remarks.

2 Stochastic modeling of biochemical reaction networks

Consider a biochemical reaction network consisting of m different chemical species
X1, . . . , Xm that interact according to K different reactions:
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m, k = 1, . . . ,K, (1)

where the coefficients ν
′
ik and ν

′′
ik determine how many molecules of the i-th species

are consumed and produced in the k-th reaction, respectively. Under the assumption
that the reaction network is well-stirred and in thermal equilibrium, it can be described

by a continuous-time Markov chain X(t, θ) =
[
X1(t, θ) · · ·Xm(t, θ)

]T
that takes states

x = [x1 · · ·xm]T ∈ Nm0 [4]. The transition probabilities of this CTMC are determined

by the reaction parameters θ = [θ1 · · · θK ]T ∈
(
R+

0

)K
and the kinetic rate law of

the reactions. Here, we restrict our attention to mass action kinetics and elementary
chemical reactions (i.e. reactions of order at most 2). These assumptions simplify the
computation of moments of the CTMC. It should be noted, however, that they are
not strictly necessary for the results of this paper and are mainly imposed because
it is very unlikely that, in a three-dimensional space, more than two molecules meet
at exactly the same time. Accordingly, any more complicated biochemical reaction
can essentially be decomposed into a series of elementary reactions whose reaction
rates are governed by the law of mass action. These assumptions lead to transition
probabilities of the CTMC that are determined by propensity functions of the form
ak(x, θ) = θkhk(x), k = 1, . . . ,K, where hk(x) are at most quadratic polynomials in x.
The time evolution of the probability distribution of X(t, θ) can then be described by
the chemical master equation:

ṗ(x, t) = −p(x, t)
K∑
k=1

ak(x, θ) +

K∑
k=1

p(x− νk, t)ak(x− νk, θ), (2)

where νk = [ν1k · · · νmk]T , νik = ν
′′
ik − ν

′
ik, i = 1, . . . ,m, and p(x, t) := P (X(t, θ) = x)

is the probability that x molecules of the m chemical species are present at time t.
Since X(t, θ) has a countably infinite state space, computing the probabilities p(x, t)
requires solving an infinite system of coupled ordinary differential equations, which
is generally not possible. Approximate solutions can be obtained in some cases, for
instance by projection to a finite state space [13,23], but we will not discuss these ap-
proaches here.
An alternative is to focus only on some low-order moments of the probability distri-
bution. Ordinary differential equations describing their time evolution can be derived
from the CME [2] and written as

η̇(t) = A(θ)η(t) +B(θ)η̄(t), (3)



where η(t) is a vector containing the (uncentered) moments up to some desired order L
and η̄(t) contains moments of order L+1. Eq. (3) shows that the time evolution of η(t)
depends on moments of higher order; hence η(t) cannot be computed without knowl-
edge of η̄(t). Accordingly, the open system of equations Eq. (3) is typically replaced by
an approximate closed system of equations

˙̃η(t) = A(θ)η̃(t) +B(θ)f(η̃(t)), (4)

where η̃(t) are approximations of η(t). The function f is usually chosen according to
an assumption on the underlying probability distribution. Typical examples are to
assume that the centered moments (or cumulants) of order L + 1 are zero [22,11],
or to choose f according to a log-normal distribution [21]. In general, the choice of
f is made rather arbitrarily without actual knowledge of the underlying distribution.
Furthermore, whether a given closure will provide good approximations depends on
the system that is being studied, the model parameters, and the order L at which the
moment equations are closed. This makes it practically impossible for someone who is
not an expert in the use of these methods to choose an appropriate closure. Despite all
this, moment closure methods have been successfully applied for analyzing CTMCs,
and specifically also for parameter inference [16,24]. The choice of the closure method
used in these references, however, was based on trial and error and the success of the
performed studies accordingly required a portion of luck.

An alternative approach for analyzing biochemical reaction networks is by using
a stochastic simulation algorithm (SSA). It is straightforward to generate statistically
exact sample paths x1(t), . . . , xn(t) of X(t, θ) in this way. From these sample paths,
estimators of any system output, for instance some moments or the entire probability
distribution at a certain time point, can be constructed. While such an approach is
easy to implement and can always be used, it comes with the major drawback that
often a large number of sample paths n is required to obtain precise estimates. This
can make the use of stochastic simulation for reverse engineering tasks computationally
prohibitively expensive.

3 Moment-based parameter inference

In this section, we formulate the parameter inference problem and review
previous methods that have been developed to solve it. The goal in this paper is
to estimate the reaction rate constants θ from measured data that is of the form
y =

{
xj1(ts), . . . , x

j
n(ts), s = 1, . . . , S

}
and corresponds to measuring the number of

molecules of the j-th chemical species in n cells at each measurement time point
ts, s = 1, . . . , S (extension to more than one measured chemical species is straight-
forward but requires more complicated expressions for the likelihood in Eq. 6 as shown
in [17]). We assume that all the collected measurements are statistically independent.
This is for instance the case for flow cytometry data where the cells are discarded after
being measured so that two different measurements can never come from the same
cell. The task of identifying the model parameters from this data can be posed as a
maximum-likelihood estimation problem

θMLE(y) = arg max
θ
L(y, θ), (5)

where y is the measured data and L(y, θ) = p(y|θ) is the likelihood of the parameters θ,
i.e. the probability (density) of the data given that θ are the model parameters. Analyt-
ically computing the likelihood is usually impossible, and accordingly, the optimization



problem Eq. (5) is typically solved by iterative numerical evaluation of L(y, θ) for many
different values of θ. Unfortunately, evaluating the likelihood for given parameters θ
requires solving the CME with these parameters, which, as discussed in the previous
section, is often impossible or computationally expensive itself. For this reason, one
option is to use sample moments of the data as measurements instead of the entire
data [24]. For instance, one can compute sample means µ̂1(ts) and sample variances
µ̂2(ts), s = 1, . . . , S from the data y and treat the vector µ̂ := [µ̂(t1) · · · µ̂(tS)]T , where
µ̂(ts) := [µ̂1(ts) µ̂2(ts)], as new data. In earlier publications [24,17], we have shown
that the probability density function p(µ̂|θ) of µ̂ is given by

p(µ̂|θ) =

S∏
s=1

p(µ̂(ts)|θ), where p(µ̂(ts)|θ) = N (M(ts), Σ(ts)) and (6)

M(ts) =

[
µ1(ts)
µ2(ts)

]
and Σ(ts) =

1

n

[
µ2(ts) µ3(ts)

µ3(ts) µ4(ts)− n−3
n−1

(µ2(ts))
2

]
,

where N stands for the normal distribution, µ1(ts) = µ1(ts, θ) is the mean and
µi(ts) = µi(ts, θ), i = 2, 3, 4 are the centered moments of the measured species Xj(ts, θ)
at time ts for model parameters θ. Since these moments can be computed from the
solution of Eq. (4), we can use this result to approximately compute the likelihood
L(µ̂, θ) = p(µ̂|θ) without having to solve the CME. Accordingly, we can solve the opti-
mization problem in Eq. (5) using µ̂ instead of y to compute the maximum-likelihood
estimator θMLE(µ̂). However, the fact that moments up to order four are required to
evaluate the covariance matrices Σ(ts) means that moment closure of order at least
L = 4 is necessary. To avoid this, one can estimate the covariance matrices Σ(ts)
from the data by computing empirical estimates of the moments up to order four
and plugging them into the above equation. Throughout this paper, we will follow
such a strategy and denote by µdata the moments up to fourth order of the data, i.e.
µdata := [µdata(t1) · · ·µdata(tS)]T , where µdata(ts) := [µ̂1(ts) µ̂2(ts) µ̂3(ts) µ̂4(ts)] con-
tains the first four centered empirical moments of the data set at time ts. This strategy
is appropriate whenever sufficiently many cells are measured so that the moments up
to order four can be estimated with reasonable precision. For flow cytometry data, the
number of cells measured per time point typically ranges in the order of thousands or
even tens of thousands; hence sufficing precision is always guaranteed.

4 Adaptive approach for parameter inference

The drawback of the approach described in the previous section is that a moment
closure method has to be chosen in advance and this closure will be used throughout
the entire parameter search. This leads to the problems that, on the one hand, it is a
priori very difficult to choose the best closure and, on the other hand, which closure
is best may also be different for different parts of the parameter space. The main idea
of the method that we propose in the following is to use a small number of simulated
trajectories of the system that are generated using a stochastic simulation algorithm
(SSA) in order to test different approximations during the parameter space exploration.
Specifically, whenever the parameter search leaves a certain area in parameter space,
defined as an ε-neighborhood around the point at which the last SSA run was carried
out, new simulations are performed and all closure methods from a predefined library
are evaluated by comparing the different approximations at the current point in param-
eter space to the simulation results. Importantly, all the approximate moment systems,



corresponding to closures of different types and degrees, are precomputed only once,
and thus new derivations of the moment equations are not required during the search.
To generate these systems we make use of Hespanha’s StochDynTools toolbox [7].

Pseudocode of our approach is given in Algorithm 1. The inputs of the algorithm
are the CTMC model X(t, θ), parametrized by the reaction rate constants θ, a set of
ODE systems CL = {c1(θ), . . . , cq(θ)} corresponding to different approximations of the
moment dynamics obtained through various closures of different types and degrees, the
centered moments up to the fourth order µdata of a measured data set Y , and a maximal
number of iterations imax that determines for how many steps in parameter space the
search is performed. The algorithm returns the maximum likelihood estimator θMLE.
The core idea of our approach works independently from the actual parameter search
technique used in the background. Thus, it can be applied in conjunction with any
standard optimization scheme used to minimize some distance between model output
and data (for instance simple gradient descent). Accordingly, we focus on the adaptive
update of the closure method while abstracting from the actual details of the parameter
search for a fixed approximation by the function NextParameter (line 18). It takes
the current values of the parameters θi and the chosen approximate ODE system
cbest(θi) and moves the search to the new parameters θi+1 according to some criteria.
In our implementation, we instantiate it with a Markov chain Monte Carlo method and
a Metropolis-Hastings sampler, based on the likelihood in Eq. (6) [24]. Additionally,
this function also takes care of updating the value of the maximum likelihood estimator
θMLE based on the likelihood of the new parameters θi+1. The remaining pseudocode
describes how and when the used closure method is adjusted. We first check whether
the current parameter values θi are still within the ε-neighborhood Nε (θref), where θref
are the parameters at which the previous simulation was performed (line 5). In our
implementation, we choose a neighborhood in the form of a hyperrectangle of relative
size Nε(θref) = {θ | |θ − θref|k ≤ ε · |θref|k, k = 1, . . . ,K}. If θi ∈ Nε (θref), we directly
proceed with the standard inference method in line 18, relying on the ODE system
cbest(θi) from the most recent evaluation. Otherwise, stochastic simulation is employed
with the current parameter values θi to compute estimates of the moments µSSA(θi)
using the function ComputeSSA (line 6), for which we utilize a standard implementation
of Gillespie’s SSA in our implementation. These estimates are then compared to the
approximations µODE(θi) obtained with all the different closure methods using the
function ComputeODE which numerically computes the solution of the system of ODEs
c(θi) ∈ CL (lines 8-15). The best approximate system cbest(θi) is chosen as the one that
minimizes some distance Dist between estimation and approximation. In general, this
distance could be determined in many different ways. In our implementation, we choose
Dist as the likelihood of the estimated moments for the measured species Xj (Eq. 6),
i.e. we measure the performance of the approximations by evaluating how precise the
approximated moments of the system output (not of the entire state) are. Finally, we
update the reference point θref to θi (line 16) and the search continues in the standard
way until the next ε-neighborhood is left.

5 Case studies

We applied our inference method to several benchmark stochastic reaction networks. In
this section, we report some exemplary results. For all examples, to generate the set of
approximate ODE systems CL we used derivative matching (dm), zero cumulants (zc),



Algorithm 1 Adaptive moment-based parameter inference algorithm

Input: CTMC X(t, θ), where θ ∈ (R+
0 )K , set of approximate moment systems

CL = {c1(θ), . . . , cq(θ)} obtained using different closure methods, data µdata, and
maximum number of iterations imax

Output: Maximum likelihood estimator θMLE

1: θ1 := random initial parameter values
2: θMLE := θ1
3: θref := +∞
4: for i := 1 to imax do
5: if θi /∈ Nε (θref) then
6: µSSA(θi) := ComputeSSA(X(t, θi))
7: dbest := +∞
8: for all c(θi) ∈ CL do
9: µODE(θi) := ComputeODE(c(θi))

10: d := Dist(µSSA(θi), µODE(θi))
11: if d < dbest then
12: dbest := d
13: cbest(θi) := c(θi)
14: end if
15: end for
16: θref := θi
17: end if
18: 〈θi+1, θMLE〉 := NextParameter(θi, cbest(θi), µdata, θMLE)
19: end for
20: return θMLE

zero variance (zv) moment closure, each with degree 2, 3, and 4, and low dispersion
(ld) moment closure with degree 3 and 4 (see [8] for details).

Example 1. The first network is a model that has recently been used to describe agri-
cultural pests [15] but can also be regarded as a model of gene expression in which the
produced protein is positively regulated by the current amount of protein and nega-
tively regulated (through an increased degradation rate) by past amounts of protein
(i.e. species N could be regarded as an abstraction of a slow process that is activated
by C and leads to the production of proteases that degrade C). It is given by the
following reactions:

∅
θ1

−−−−−→ N + C N
θ2

−−−−−→ 2N + C

N + C
θ3

−−−−−→ C C
θ4

−−−−−→ ∅.

We assume that N(0) = C(0) = 0 and that the true parameters are given by θ1 = 0.03,
θ2 = 0.012, θ3 = 0.25 · 10−4 and θ4 = 0.003, and that 5,000 cells are measured at the
time points t1 = 10, . . . , t90 = 900. As settings for our algorithm we used ε = 0.2 and
performed 200 simulations whenever the search leaves an ε-neighborhood, i.e. in line 6
of Algorithm 1.

An exemplary run of our parameter search for imax = 1,000 iterations, started
from random initial parameter values, is shown in Figure 1. It can be seen that all the
inferred parameters, i.e. the maximum-likelihood estimates θMLE(µ̂), agree with the



true parameter values up to negligible errors with basically no uncertainty. The former
is a sign that a precise moment closure method exists for this example, whereas the
latter stems from the large number of measurements that we assumed to be available.
Figure 2 shows that also the model predictions, computed with the inferred parameters
θMLE(µ̂) and the best closure method, agree well both with the data and with SSA
estimates of mean and variance obtained with the inferred parameters. We can conclude
that the moment closure approximation is very precise and can match the data up to
very small errors.
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Fig. 1. Parameter search for Example 1. The panels show the values of the pa-
rameters in the search as a function of the iteration (blue). It can be seen that after
approximately 600 iterations the search is very close to the true values (red lines) for
all parameters and retains these values.

To evaluate on the one hand how important it is to choose a good approximation,
and on the other hand whether it is necessary to adaptively change the closure method
during the search, we performed the parameter inference with the same data and
the same algorithm, but fixed an initial closure method and did not allow the search
to switch between different approximations (i.e. by choosing ε = +∞). Table 1(a)
compares the error in the inferred parameters obtained from our approach to the error
in the results when the closure is fixed. It can be seen that for some of the fixed closure
approaches the error in the parameter estimates is very large (specifically for all of
the zero variance closures). Other methods provide more precise results, but overall all
methods with fixed approximation are outperformed by our adaptive approach. Only
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Fig. 2. Model output and data for the inferred parameters. (A) The mean
computed with the best closure method (black) and the inferred parameters agrees
very well both with the data (red) and the results of stochastic simulation with the
inferred parameters (blue). (B) Also all the variances agree very well. The color coding
is the same as in (A).

the fourth order zero cumulants (zc4) closure was more precise than our approach
for two of the four parameters. However, for our case study this closure was also
computationally the most expensive one and the parameter search with fixed zc4 closure
actually took twice as long as the adaptive search, despite the additional stochastic
simulations and evaluations of all closure methods needed here.

To further test our results, we investigated how often the approximation was
changed during the run of our algorithm and which closure methods were used most
often. Table 1(b), column Ex 1, shows how often the different closure methods were
chosen as best. It can be seen that some approximations were never chosen (for instance
all of the zero variance closures but also the third order low dispersion closure) whereas
derivative matching and zero cumulants closures are chosen most often. Overall, high
order closures are preferred over low order closures. This was to be expected, since
these usually provide more precise results at the cost of an increased computational
effort. Also we highlight that the option to switch the approximation was often used
(in 19 out of 23 evaluations), and, compared to a pure simulation-based approach, we
needed to employ stochastic simulation only 23 times (instead of 1,000 times).

Further examples. In addition to Example 1 we applied our algorithm to two further
reaction networks and performed the same comparisons. Specifically, we considered the
model of transient gene expression reported in reference [24] (termed here Example 2)
and the first case study in reference [18] (termed here Example 3). The results were
overall similar to those obtained for Example 1 and we only report in Table 1(b),
columns Ex 2 and Ex 3, how often the different closure methods were used by our
adaptive search. It can be seen that in Example 3 the second order zero cumulants
and the fourth order derivative matching closure were chosen exclusively, whereas in
Example 2, different zero cumulants and low dispersion closures were used most often
and there was no noticeable preference for higher order closures.



(a) Example 1

closure θ1 θ2 θ3 θ4

adapt 0.44 0.31 0.65 0.29

dm2 4.45 2.74 2.68 4.32

zc2 11.02 6.11 3.23 2.93

zv2 281.09 74.85 45.72 76.29

dm3 2.54 1.23 1.85 3.55

zc3 9.72 4.80 0.86 2.87

zv3 285.55 79.96 49.01 83.41

ld3 9.08 4.30 6.75 9.63

dm4 3.43 1.33 4.17 9.54

zc4 0.35 0.19 3.77 9.29

zv4 292.60 78.89 46.60 71.90

ld4 14.44 3.80 12.31 28.06

(b) Search statistics

closure Ex 1 Ex 2 Ex 3

dm2 15 13 0

zc2 10 23 50

zv2 0 0 0

dm3 10 0 0

zc3 5 16 0

zv3 0 0 0

ld3 0 23 0

dm4 15 0 50

zc4 35 6 0

zv4 0 0 0

ld4 10 19 0

switch 19 30 11

sim tot 23 44 46

imax 1,000 1,000 2,000

Table 1. (a) Relative distance (in percent) between true and inferred parameters ob-
tained from our adaptive algorithm (adapt) and the different closure methods on their
own. The smallest distance is marked in bold. (b) Statistics of the used closure meth-
ods for the three considered reaction networks. Columns correspond to the different
networks (Ex stands for example), rows report in percent how often each of the closure
methods was chosen as best in our adaptive search. The bottom block of rows show
how often the used approximation was changed as our search progressed through the
parameter space (switch), how often stochastic simulation was performed, i.e. how of-
ten ε-neighborhoods were left and all the closure methods were tested (sim tot), and
the total number of iterations in the search (imax).

6 Discussion

Using mathematical models to help in the understanding of complex biological sys-
tems is the core idea of systems biology. Up to some years ago, the main bottleneck
in the identification of models was the availability of sufficiently precise and abundant
data. Recently, measurement technologies have been improving at an amazing pace and
nowadays enable us to simultaneously observe the dynamics of many different chemical
species at single cell resolution. As these developments continue, we will gain access to
data that is sufficiently informative to allow us to infer mathematical models of com-
plex reaction networks from the measurements. However, for stochastic kinetic models
that capture the inherent randomness of chemical reactions, this leads to a new bottle-
neck: the chemical master equation becomes intractable for high-dimensional models
and especially the reverse engineering task of identifying model parameters from the
measured data quickly becomes computationally infeasible. Parameter inference meth-
ods based on moment closure offer a solution to this problem but come with their own
drawbacks. The goal of this paper was to address these drawbacks and to provide an au-
tomated moment-based inference method that can be used without in-depth knowledge
of moment closure. To this end, we interfaced previously proposed approaches with a



stochastic simulation algorithm by continuously checking the quality of the approxi-
mations and adaptively adjusting the used closure method to the best one available.
Accordingly, our approach is generally applicable whenever a sufficiently accurate ap-
proximation in the generated library of moment closure methods exists. Importantly,
since the approach can adapt the used closure during the exploration of the parameter
space, it is not required that a unique closure method provides good approximations
for the entire parameter space. Naturally, these benefits come with an increased com-
putational cost compared to most standard moment-based inference approaches. This
increase can primarily be attributed to the additional stochastic simulation and the
evaluation of all the closure methods that is performed whenever the parameter search
leaves an ε-neighborhood around the point in parameter space where the last simulation
was performed. Accordingly, the parameter ε provides a trade-off between computa-
tional cost and guarantees that a good approximation is used. For ε→∞ our approach
becomes a standard moment-based inference method, whereas ε → 0 essentially leads
to a method akin to those based entirely on stochastic simulation. We believe that
this flexibility will prove to be valuable and allow us to investigate a large variety of
different reaction networks with one unified inference method.

As future work, we plan to include and test more moment closure methods (e.g.
the linear noise approximation), to apply our algorithm to larger and more challeng-
ing reaction networks, and to make a complete toolbox for moment-based parameter
inference publicly available. In addition to this, in order to speed up our algorithm, we
plan to introduce a trade-off between precision and computational cost of the differ-
ent approximations such that the more expensive high order closure methods are only
chosen when the low order closures do not provide acceptable precision.
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